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ABSTRACT

An analysis is presented to investigate aspects of
wave hydrodynamic effects on a horizontal platform by
numerical methods. A finite element procedure 1s
developed to model the fluid region. The flow is assumed
to be inviscid and irrotational. The two-dimensional
model treats the full non-linear free surface equations
along with Laplace equation. In this model, the physical
domain is subdivided intc segments. the hydrodynamic
equations of motion for each segment are independently
mapped using isoparametric procedure, into an assemblage
of mathematical planes of simple geometry. Finite element
modelling is done in the sequence of mathematical planes.
The resulting discrete equations are solved iteratively
using multi-grid methods. The water particle velocities
are computed for different depths and locations along the
platform and compared to the laboratory data using a
two-dimensional Laser Doppler Velocimeter (LDV). The
transmitted waves downstream the platform are also
obtained and compared to that of experimental measurement.
The wuplift pressures time-history are found for different
locations and platform underside clearances. The pressure

profile is characterized by an impulsive peak pressure

iv




followed by a slowly varying pressure which is first
positive and then negative. The computed pressure-time
results compared fairly well with the earlier laboratory
measured data. The time-history of the uplift force is
initially positive; increasing with time to a maximum
which is greater than hydrostatic force; then decreases
| with time reaching negative values substantially larger
than the positive force then returns to zero. Again, the
computed force-time-history compares quite well with the

available experimental data.
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CHAPTER 1
INTRODUCTION

Due to growing efforts in the prospecting and
harvesting of marine resources, offshore and nearshore
construction activities have been steadily on the rise
over the vyears. This makes the task of accuratély
determining the wave forces on coastal structures a very
important one. °~ These offshore structures may serée_as
platforms for prospecting and production of oil and
minerals, for scientific research,and as weather stations

or as pilers.

In a storm or in the presence of unusual wave
activities, marine structures, such as piers or offshore
platforms, may be subjected to significant uplift
pressures even if they are built above the still-water
level, These pressures occur when progressive incident
waves propagate beneath the structure and make contact
with it, If these wuplift pressures are not properly

understood and accounted for in the design stage, they can

ultimately destroy the structure,




There have been numerous reports of structural
failures due to large incident waves or due to
oscillations from sources not previously accounted for.
Only when accurate estimates of the wave forces are
available can economical coastal structures be designed

and constructed.

Previous studies by El Ghamry (1963), Wang (1967},
and French (1969) have demonstrated the existence of
uplift pressure, but as yet, no satisfactory theoretical
model has been provided. French (1969) conducted an
experimental study on wave uplift pressures on a
horizontal platform subjected to solitary waves of various
amplitudes. His results indicated that wuplift pressure
are characterized bf an initial peak pressufe of
considerable magnitude but of very short duration (impact
pressure), followed by slowly varying uplift pressure of
less magnitude but of considerable duration, which

typically is first positive and then negative,

The major objective of the present study is to
investigate aspects o¢f wave hydrodynamic effects on a
horizontal platform by numerical methods. A finite

element modeling technique has been used to actually model




the fluid flow and predict the fluid kinematic behavior as
a function of time. The flow is assumed to be inviscid
and irrotational. The two-dimensional model treats the
full nonlinear free surface equations along with Laplace
equations. A solitary-type wave has been adapted as the
incident wave for this analysis, since it represents a
finite-amplitude ocean wave propagating through shallow
water, and it is also conveniently mathematically
representable. There are several mathematical theories
for this type of wave, and a simulated wave can be
generated easily in a laboratory with a high degree 'of

reproducibility of wave height.

In Chapter 2, previous mathematical and experimental
studies of uplift pressures on platforms and related
phenomenon are surveyed, In Chapter 3, iathematical
aspects of the free surface flow and the available methods
of solutions are discussed. In Chapter 4, numerical
schemes of the governing equations are presented. In
Chapter 5, the experimental equipment and procedure for
velocity measurements by means of a Laser-Doppler
velocimeter are discussed. The results  of the
investigation are prasented in Chapter 6. Conclusions are

presented in Chapter 7.
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Santa Monica Pier during a storm.
(Courtesy of Evening Outlook, a
Santa Monica, Ca. newspaper.)
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Wind-tossed 10- to 12-foot waves impact on
Santa Monica Pier during a storm. {Courtesy

of BEvening Outlook, a Santa Monica Ca.
newspaper. 5




CHAPTER 2
LITERATURE SURVEY

2.1 General Fluid Loading On Marine Structures

An understanding of wave impact on marine structures
has developed during the past decades and is continuing to
develop through analytical and experimental methods. The
general problem of hydrodynamic impact has been studied
extensively for slender members of ocean structures and
for large gravity structures involving components of
relatively large sections. The uplift wave loading on .a
horizontal platform  has been studied by several
investigators through experimental and analytical methods,
but as yet no clear mathematical model for flow
hydrodynamic beneath the platform region has been
developed. In this chapter, a survey of previous work is
presented, but attention is focused mainly on wave impact

on horizeontal and rigid platforms.

There is considerable body of 1literature concerning
wave-structure interaction for computation of wave forces
on marine structural members. There are basically two

different methods used for computation of fluid loading on




fixed or floating gravity structures, depending ﬁpon the
relative dimensions of the structural members. Morison
(1953) developed an empirical formula for the forces on a
vertical slender cylinder,. Morison's equation assumes
that the fluid forces can be divided into two independent
components, the drag force and the inertia force. The
drag force is proportional to the square  of the
water-particle velocity, where the constant of
proportionality is known as the drag coefficient Cph The
inertial force, ar virtual-mass force is proportional to
the horizontal component of acceleration of the particle
velocity with a constant of proportionality known as Cu
The values of Cp and Cy have been chosen mainly on the
basis of empirical data. In this equation, it is assumed
that the fluid forces on stétionary slender members in an
unsteady motion are given by the linear superposition of a
drag force and an inertia fdrce, and the assumption that
the kinematics of the undisturbed flow in the region near
the structure do not change the incident wave direction.
These assumptions are valid for a small ratio of diameter
or equivalent section diameter of the structural member to
the wavelength, which justifies the absence of wave
scattering. However, for ocean structures that are not

slender, such as gravity-type platforms or other




structures involving components of large sections, methods
based on diffraction theory are used to estimate the wave

forces.

Diffraction or potential flow theory refers to the
inviscid, incompressible and irrotational solution of
fluid-structure interaction corresponding to a fixed or
moving body. This method has been described by several
authors, including Ippen (1966) and Sarpkaya, et al.
(1981). The Llinear diffraction problem arises when the
wave amplitude is assumed sufficiently small. Then, the
problem reduces to the solution of fluid-structure
interaction satisfying the linearized free surface
boundary conditions as well as the radiation condition
which requires that at large distances from the structure
the scattered wave corresponds to an outgoing wave. fhe
limitations of the linear diffraction theory arise from
the assumptions of zero viscosity of the fluid and small
amplitude motion, as implied by the applications of the
linearized free surface boundary condition. The nonlinear
effects become significant only in the case of
shallow-water and large-amplitude waves. Friedrichs and
Lewy (1948) studied the two-dimensional dock problem as a
special case of the problem of waves on a sloping beach

with a slope angle of 180 . The problem was presented by




considering one half plane of an infinite water surface
covered with a rigid plate against which sinusoidal waves
of small amplitude propagate from the positive x-axis.
The water flow was described by a complex potential
function from which the velocity components could be
derived, along with linear boundary conditions for the
free surface, It was shown that there were two
standing-wave solutions, one permitting the potential
function to have a logarithmic singularity at the dock
edge, leading to infinite wave height there and the other
by considering a boundéd solution leading to a

finite-amplitude wave at the seaward edge of the dock.

2,2 Experimental Studies of Wave Uplift Pressure

on Platform

El Ghamry (1963) performed an investigation, which
concerns the prediction of wave forces that act vertically
on a horizontal, even-bottom deck under the action of
periodic waves. The main objectives of his investigation
were: 1) to study the nature of the forces acting on a
horizontal deck under the action of breaking and
nonbreaking periodic waves and for certain geometrical
conditions; 2) to determine the feasibility of using the

existing theories in predicting the magnitude of these




forces; 3) to correlate these forces with measurable wave
parameters; 4) to study the instantaneous pressures at
some points along the deck; and 5) to provide information
about the effects of some geometrical parameters on the
relationships between the induced forces and the wave

characteristics. (El Ghamry, 1963, p. 7).

In his theoretical consideration of nonbreaking
waves, El Ghamry made use of Stoker and Fleishman's theory
for floating bodies in shallow water, in which linearized
version of potential fluid theory for free surface flow
was used. He derived a relation for pressure distribution
under the deck by substituting of potential function for
simple harmonic waves into a linearized form of

Bernoulli's equation.

In El Ghamry's experimental study, the dock model was
placed in a wave tank 1.0 ft. wide, 3.0 ft. deep and 105
ft. long. A flap-type wave generator was located about 7
feet from one end of the flume, The dock was 4.0 ft.
long and nearly as wide as the wave tank. To absorb
unwanted wave reflections, a vertical wave absorber made
of aluminum metal borings was placed behind the flap wave
generator, and a long flat beach-type wave absorber was

used at the opposite end of the channel. To measure the

10




pressure, twe strain gauge-type pressure transducers were

installed on the dock.

The wave pressures on the dock were measured for
three cases, nonbreaking waves with no beach, waves
breaking on a 1:5 slope without air entrapment and waves

breaking on 1:5 slope with complete air entrapment,

For the case of nonbreaking waves, the tank bottom
was kept horizontal Dbeneath the dock and no beach was
installed. He also concluded that the dock <an be an
efficient breakwater 1if a sufficient length and a proper
underside clearance is used. The transmitted wave was
found to be composed of different amplitude and phase

shife.

For the case of breaking waves, the experiment was
conducted on a beach slope. The statistical distribution
of peak pressure within a cycle was found to be Gaussian
for both cases both with and without air entrapment. For
waves breaking on a 1:5 beach slope with no air
'entrapment, the total force was characterized by the
existence of two peaks in each cycle. The first peak was
due to the wave action before breaking and the second peak
was caused by the wave after breaking. For the same

condition of wave breaking but with complete air

11




entrapment, the pressure records indicated an impulsive
shock component. The mean peak pressure in this case was
about twice as high as when air was not trapped. The
relative magnitude of both peaks was found to depend

significantly on the wave period.

Wang (1967) studies wave .pressure on a horizontal
pier for the case of rigid, smcoth, and horizontal
platforms, and constant-depth ocean floor. His
theoretical analysis was based on linear theory. He
considered a general impulse-momentum relation for the
impact pressuré in terms of the mass of the amounthof
water responsible for the impact, and the effective
velocity at the instant of contact. One important feature
in the analysis concerned the estimate of this mass and
the effective velocity. Wang adapted an approximation
analysis, considering this mass of water to be equal to
the mass contained in a semi-cylinder with the length of
the pier and diameter of wetted length of the pier. The
effective velocity was considered to be the vertical
particle velocity of the free surface at the instant of
contact. Wang then derived a relation for impact
pressure, stating that the impact is proportional to the
product of the vertical component of the water velocity at

the point of contact and the rate of change of wetted

12




length at the instant of impact. To determine the slowly
varying pressure, he made use of the Eulerian equation for
an element of fluid in vertical direction, and derived a
relation for slowly varying pressure in terms of incident

wave characteristics.

In relation to slow varying pressure, wave
characteristics of an undeformed wave at an elevation of
the platform were used, This relation simply states that
the slowly varying uplift pressure consists of two parts,
the hydrostatic pfessure and the pressure due to vertical
local acceleration. For gravity waves, the vertical
acceleration does not exceed the acceleration of gravity,
Then the pressure head is equal to one to two times that
the elevation of the 1local water surface, less the
elevation of the platform above the still-water level.
These relations for impact pressure and slowly varying
pressure were applied in the analysis of standing wave,
pericdic progressive waves, and dispersive waves striking

a narrow pler.

Wang conducted some experiments on dispersive waves
as incident waves. The experiments were performed in the
dispersive wave basin of the Naval Civil Engineering

Laboratory. The wave basin is 95 ft. long, 92 ft. wide,

13




and 3 ft., deep. The test pier was a plexiglas plate &6
ft. by 1 1/2 in. The leading edge of the pier was wedged
to 25 degrees in order to minimize the effect of
horizontal impact force by the incident waves. The uplift
pressure on the underside of the pier was measured by
transducers placed on the underside of the pier at
different locations from the leading edge of the pier.
Two types of transducers were used toc permit a complete
measurement of the pressure induced by the waves on the
underside of the pier. One was used for meésuring slowly
varying pressure, and the other (with 1its high natural
frequency) measured shock loading with a rise time of
microseconds., Waves generated by a plunger-type wave

generator,

From Wang's experiment, it was concluded - that the
presence of the pier causes the waves to be attenuated in
height, but their 1length and period remain almost
unchanged. In the data reduction of the slowly varying
pressure, the maximum components showed a wide range of
scatter, but within the predicted range. The recorded
impact pressures correlated poorly with theoretical
values, Wang also suggested an empirical relation for
estimating the duraticon of impact, which correlates the

impact duration to the square root of a wave height by a

14




constant factor, varying between 15 and 40.

French's work (1969) is, to the writer's knowledge,
the latest study of wave ﬁplift pressure on horizontal
platforms with positive soffit clearance. A rational
analysis was derived for the nonuniform, unsteady,
two-dimensional flow beneath the platform region as the
wave strikes. The analysis was based on the assumptions
that the viscosity and Surface tension and the effect of
air entrainment are neglegible; that the form of the free
surface wave profile remains unchanged, meaning the
celerity of propagation is constant for all points on the
profile; that the induced fluid-particle velocity at the
seawérd edge of the platform by the incident wave and the
water surface elevation at the seaward edge are not
affected by the presence of the platform; that the
pressure is hydrostatically distributed; and that the
fluid velocity 1is independent of depth. The equatién of
continuity and equations of motion were then integrated
over the flow region near and beneath the platform to
derive a relation for the celerity of the wave front and
wave of recession as the wave strikes and propagates
beneath and in contact with the underside of the platform.
The slowly varying wuplift pressure, when positive, was

related to wave-front celerity; when negative, 1t was
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related to the celerity of wave recession. For both
positive and negative slowly varying pressures, the
analyses were subjécted to the previously mentioned
assumptions, and the flow may be approximated by a simple
step form. Peak pressure at the wave front was considered
to be the pressure at a stagnation point on the underside
of the platform. Then, the Bernoulli inteqgral equation
was employed between the stagnation point and a point on

the water surface far ahead of the wave,

The experimental study was performed in a horizontal
channel 610 mm deep by 400 mm wide by 30 m long. A
piston-type wave generator was used at one end of the
channel to generate solitary waves as incident waves. The
platform was made of an anodized aluminum plate 13 mm
thick, and had a flat, horizontal underside with a flat
vertical front face spanning the full width of the tank.
The wave generator consisted of a flat vertical plate
nearly as thick as the tank cross-section and a cam-driven
piston generator. The plate was driven by a mechanical
linkage in a time-displacement function that could
generate the desired solitary waves. Uplift pressure on
the platform was measured by a pair of pressure
transducers mounted on the underside of the platform, one

12.8 mm in diameter and the other 3.2 mm in diameter. To
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aveid the problem of spatial resolution it was found that
it was necessary to use a sufficiently small transducer
whose radius is 1less than one third the characteristic
half-width of the pressure distribution to be measured.
Despite the use f the smallest commercially available
pressure transducer, the problem of spatial resolution
could not be avoided entirely. An extrapolation procedure
was employed to handle this problem. Another difficulty
was a significant shift in output signal due to changes in
temperature. This was due to the silicon semiconductor
transducing element which was a heat source because ‘it
carries an electric current., The heat was conducted away
from the platform and from the surrounding environment.
When the wave was propagating beneath and in contact with
the platform, the rate of heat conduction was
significanfly increased, causiné a shift 1in pressure
signal output. To scolve the temperature shift, it was
first decided to reduce the excitation voltage to the
amount of heat generated. But this resulted in a small
output voltage, A second alternative was to heat the
water in the tank, which was found to be impractical
because of the problem of temperature control. Finally,
the problem  was partially solved by mounting the

transducer in an adaptor with an oil-filled chamber sealed
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with an external diaphragm of polyethylene.

From French's experiment, it was concluded that the
peak pressure was intrinsically subjected to considerable
variance, because of the spume and entrained air 1in the
flow near the wave front. However, the correct peak
pressures for different incident wave systems increase
with respect to wave height and decrease with increasing
soffit clearance. With respect to the slowly-varying
pressure, it was found that the positive slowly-varying
pressure depends on wave height and soffit clearance, and
the negative slowly-varying pressure depends on soffit
clearnce, location, and with little dependence on wave
height. The ratio of the durations of positive uplift
pressure to negative uplift pressure decreases with the
increase of the relative distance of measurement at a
particular point from the upstream edge of the platform.
Because of the severe oscillations in the pressure
records, it was difficult to determine meaningful values
of time of zero pressure. A curve was fitted through the
region of oscillation to represent the mean value about

which pressures varied.
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CHAPTER 3

THEORETICAL CONSIDERATIONS

3.1 The Physical Problem

The theoretical aspects of the problem can be
described by referring to Fig. 3.1 that shows the series
of events which take place as a solitary wave approaches

from x=-» and strikes a fixed and rigid platform.

The two-dimensional case considered consists of a
fluid region of constant depth, above which a platform,
with underside clearance, S, is fixed. The fluid region
has a depth of d and extends from x=-» to x=+w, A
solitary type of wave is chosen as an incident wave since
it could represent a relevant model of ocean waves in
shallow water, where piers or platforms are usually
situated. This wave has a heiqht, H, gqreater than the

clearance, S, of the platform.

Initially, the wave approaches the platform from
x=-», " As the wave strikes the platform, it continues to
propagate beneath and in contact with the platform. A
reflected wave disturbance propagates in the opposite

direction from the platform., The transmitted wave, as it
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o E FIXED PLATFORM

(a) Solitary wave approaching the platform
shoreward .

¥_

A/ /I /e e

(b) Solitary wave striking the platform, causing
uplift pressure.

i

T
(c) Solitary wave propagating beneath and in
contact with platform.,

Fig. 3.1 Events taking place, as a solitary wave

approaches a platform of horizontal soffit
and positive clearance.
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continues ta propagate beneath and in contact with the
platform, causes an 1initial peak préssure of large
magnitude and vefy short duration, followed by a slowly
varying uplift pressure of smaller magnitude but of
considerable duration, which 1is initially positive and

then negative (French, 1969).

3.2 Mathematical Formulation of Free Surface Flow

To introduce the basic system of equations governing
free surface flows, we consider a two-dimensional flow
situation in which a wave is propagating in water of
constant depth, 4, in a region of infinite horizontal
extent., It is assumed that the wave maintains a permanent

form and that there is no underlying current.

A definition sketch of the coordinate system is
presented 1in Fig. 3.2. In this fixed Eulerian frame of
reference, the x-coordinate is located aleong the still

water surface, with the y-ccordinate directed upward.

The displacement of the free surface from the
still-water level 1is nlx,t). The wave induces a flow
field (u,v) where U(x,y,t) and Vi(x,y,t) are the horizontal
and vertical velocity components, respectively, and t is

the time.
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3.2.1 Governing Equations

To simplify our analysis, the following physical

reasonable assumptions are

made which are valid
approximations for many free-surface phenomena:

1. Incompressible homogeneous fluid

2. tinviscid
3. Irrotational

4, Negligible surface tension

5. No air entrainment

Then the governing hydrodynamic equations are: the

continuity equation;

= 1.1
u'x + v'y 0 ( )

the equations of motion in the x-direction;

u + uu + vu +
PR -

r X 'Y P =0

X {3.2a)

ol

the equations of motion in the y-direction;

1
v't+uv'x+vv'y+3P'y+g=O (31.2b)

and, the equation of vorticity,
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u - = 0 (3.3)
Assumptions of inviscid, irrotational, and incompressible
flow can be used to define a velocity potential ¢{x,y,t).
The velocity vector may be expressed as the gradient of a

velocity potential; i.e.,
q =9

where q(x,y,t} = (u,v), is the velocity vector with u,v in
the x,y directions, respectively, and the gradient
operator Vv defined as g% i+ g%j. From the continuity

equation for an incompressible fluid
7 .-3d=0

and using the definition of the velocity potential,

Laplace equations are obtained

Vedga= V2¢ =0 =-d <y <n (3.4)

3.2,2 Boundary Conditions

To solve the Laplace equation for a given body of
fluid, it 1is necessary to define the boundary conditions
on all boundaries of the fluid domain. Typical boundary

conditions can be summarized as follows:

(i} Dynamic boundary condition at the free surface:
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This condition imposes a constant pressure at the
free surface

p=P(x,t) ony=n

For inviscid flow and surface tension effects to be
negligible, this condition is implemented through the
Bernoulli equation which can be derived by substitutions
of Eqg. (3.3) into (3.2) and the integration of the latter
equations. Then the Bernoulli equation in terms of

velocity potential is

P l, .2 2
+ = + = + = =
¢,t 5 2(¢,x ¢'Y) + gn F(¢t) on y n

Without loss of generality, the pressure at the (free
surface can be taken to be equal to zero, and F(t) can be

absorbed into the potential function. Then we have,

l,.2
b o+ 30402 ) +gn =0 ony=n (3.5)

(ii) Kinematic boundary condition at the surface:

This describes the condition in which the fluid
particle velocity normal to the free surface is equal to
the velocity of the free surface itself in that direction,

or a particle of fluid will always remain on the free

surface,

The equation of the free surface can be written as
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Y -n(x,t) =0

In order for this condition to be satisfied, we must have
D
DE (y=n) = 0

Then, in terms of velocity potential, we have

=0 = (3.6)
'Y eny =n

{iii) No flow through the bottom boundary:

Finally, the boundary condition on the impervious
boundary states that the velocity component normal to the

boundary is zero

¢'y=0 ony = -h (3.7)

The difficulty of the problem lies in the
nonlinearity and coupling of the boundary conditions at
the free surface, which is in motion. The free surface
elevation 1is an unknown a priori and must be determined
from the solution of the problem, along with Laplace
Eq. (3.4) on the interior of the fluid region as well as

the equations on the free surface.

Most wave theories satisfy the Laplace equation and
the bottom boundary condition exactly. Then the different

specializations of the free surface boundary conditions
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give rise to different classes of solutions. But
simplification without careful study of the problem, leads

to qualitatively incorrect results.

3.3 C(Classes of Available Solutions

In the case of small motion {(wave amplitude and
velocity considered are small), the nonlinear terms of
Eqs. (3.5) and {(3.6) may be neglected. Furthermore, for
small amplitude, these ccnditions may be applied at the
original undisturbed surface level. The free surface
displacement n can be eliminated between the linearized

versions of equations; then, the resultant equation is

O ep Y99, =0
The whole class of solutions to this equation 1is termed
linearized solution or first:order wave theory, and the
surface configuratidn is characterized by sinusoidal
motion, The validity of the linearized equation is
expressed by the inequalities

<<l

((l

aim  bvm

where H, L, and 4 are wave amplitude, wave length, and
still-water  depth. For small-amplitude waves, these

inequalities are considered satisfied.
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In order to treat finite amplitude waves, higher
order approximations are required. Then the convective
acceleration term cannot be set equal to zero, as was done

for small amplitude waves.

To seek an exact analytical solution is almost
impossible, as has been noted by many authors. Analytical
golution is usually carried out by series soiution and by
using general perturbation schemes. In this case, a

series solution for the potential functions is considered

¢ .=Zen¢n

0

as

where e€<<l is a perturbation parameter. If this expansion
is carried out to second-order, then the solution leads to
Stoke waves. Stokes employed a successive approximation
technique by inclusion of a large number of harmeonic
functions in series fepresentation. But this 1is wusually
inconvenient and unsuitable for general solution of

large-amplitude waves over a complete range of depths.

With the advent of high-speed computers, it |is
usually desired to solve the full nonlinear free surface
equations as well as the Laplace equation in the interior

regions by numerical methods. The difficultyarises from
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the fact that the free surface boundary conditions cannot
be handled by the usual means because the free surface is
in motion. This 1is usually handled by repeated
application of some numerical computational steps in
sequence to construct the motion of the free surface,
There have been previous studies to develop techniques for
solving full nonlinear free surface problems with the
advantage of being computationally stable and efficient.
For long-term computations, the truncation errors of
finite difference approximations of derivations are
accumulated which will lead to unstable solutions, These
errors are particularly bothersome in the presence of
nonlinear advective terms and the coupling of free surface
boundary conditions. The instability is usually observed
by free surface oscillations which cause the computations

to stop,.
L ]

A major difficulty in long-term numerical integration
of the equation of fluid motion by finite difference
methods has been the nonlinear computational instability
of the finite difference analogies of the governing
differential equations, unless the finite difference
expression for the advection term is restricted to a form
which properly represents the interaction between grid

points. One of the successful methods that was designed
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to calculate the flow of a viscous incompressible fluid
with a free surface is the Marker-and-Cell (MAC) method
which is developed by Harlow and Welch (1965). The MAC
method is based on a Eulerian finite difference model for
the equations of continuity and the Narier-Stokgs
equations. The fluid surface is defined by a Lagrangian
line, and the «coupling between the equations in the
interior and the equation on the Lagrangian is carried out
by Marker particles that move through the stationary
network of cells., The criticism of the MAC method is the
lack of consistency between the particle model for the
free surface and the finite difference model for the fluid
region when the free surface 1s not regularly shaped.
Several modifications to improve the free surface
representation have been suggested by several authors,

including Nichols and Hirt (1971),

There has been an effort to use the Galerkin method
to solve large free surface problems. Preko (1968) and
Easton and Catton (1972) used a combined
analytical-numerical method which involved no
linearization of free surface equations to compute such
motions. In their method, the full nonlinear free surface
equations were integrated numerically and were matched to

a series solution of the continuity equation in the
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interior region by the Galerkin method., Since the recent
development  of the finite element methods to flow
analysis, great interest has been shown in finite element
formulation of free surface problems in order to handle
irregular and more general boundary conditions. A
Eulerian-Lagrangian finite element has been formulated by
several authors for incompressible flows with a free
surface. Hughes, Liu, and Zimmermann (1978) used a mixed
Lagrangian-Bulerian finite element scheme to solve
incompressible viscous flows. Wellford and Ganaba (1981)
developed a finite element scheme with a hybrid Langrange

line to solve inviscid free surface problem,

The conclusicns to be drawn from the above discussion
are that linearization of any form must be avoided in free
surface flow problems involving large free surface
motions, and that the method of solution must provide
minimum truncation errors, such as finite difference
analog of derivatives, to avoid amplification of these
errors by nonlinear terms. Some further conclusions may
be drawn regarding a technique by which to handle the free
surface boundary conditions, since the free surface is in
motion and cannot be handled by the usual means. The
computational procedure must also provide a consistent

coupling mechanism for .approximate solution of the
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interior region and approximate solution of the free

surface boundary.
3.4 Method of Solution

In the present study, our intention is to solve the
full nonlinear free surface boundary condition along with
the Laplace equation and solid boundary conditions by a
finite element scheme. To handle a moving free surface,
we adopt a mapping technique to transform the fluid region
and its boundary intoc a regular geometry. Since it is
necessary for the class of solutions proposed to be
associated with some geometry, and some initial condition,
the equations will be specialized to a two-dimensional,
flat-bottom region, propagation of a solitary wave is

considered.

A definition sketch of the solution domain 15
presented in Fig. 3.3, showing initially a solitary wave
of height H propagating into a still water of constant
depth d. | The interior domain § contains an inviscid
incompressible fluid. The flow is assumed to be
irrotational. The boundary 391, represents the free
surface of the flow. The boundary oQ, represents a
spatially fixed bottom on which fluid velocities are equal

to zero.
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Recalling the equations for free surface motion from

previous sections

b ax t O gy =0 in @ (3.4)
1,.2.,.2 _

b g P30, x*e,y) *gn= 0 on 3qy (3.5)

n ¢ +¢,xn,n - ¢’Y =0 on 3, {3.6)

¢’Y = 0 on 3@, | (3.7)

To solve these equations with corresponding boundéry
conditipns over the problem domain, a finite element
approximation technique is employed. To ensure that a
small number of elements can represent the curved free
surface boundary, distorted rectangular-type elements are
used. Isoparametric mapping 1s wused as a technique to
handle the free surface motion. No matter how large the
free surface motion 1is, by this technique, the physical
domain is mapped into a regular domain., The inherent idea
of this technique is general and could be éasily extended
to analyze the problem involving free surface problems.
The governing equations are then written in terms of
regular domain coordinate. To apply the finite element

analysis, the conventional discretization procedure of the
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Galerkin weighted residual method is employed for

approximation of the equations,

3.5 Discussion of the Assumptions

The previously made assumptions have permitted the
developmént of potential flow analysis for wave impact on
a horizontal platform. We shall now proceed to discuss
the effect of each assumption in the flow region beneath
the platform and, in particular, on the uplift pressure on

the platform.

The assumption that viscosity has a negligible effect
in our problem may be examined by analysis of Reynolds
number and boundary-layer development, The Reynalds
number for a rigid body of a given shape in a flow field

is defined as

_ LU
Re = T

Where L is a length representing the linear dimensions of
the body, U is the flow velocity characteristic, and v is
the kinematic viscosity of the fluid. The Reynolds number
is a measure of the ratio of representative magnitude of
inertia forces to that of viscous forces. When the
Reynolds number is sufficiently large, viscous forces
often play a negligible part in the. equation of motion

over nearly the whole flow region, According to the
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Prandtl boundary-layer theory (Currie, 1974; p. 282) the
pressure is independent of the transverse coordinate in
boundary layers, then the pressure distribution along the
boundary layer will be the same as that of the outer flow,
providing that the thickness of boundary layer 1is much
less than a characteristic length. When the boundary is a
flat plate, the thickness & which 1is defined as the
distance y from the solid boundary, is

1/2

§/x = 5 Re Laminar boundary-layer

1/5

§/x = .38 Re Turbulent boundary-layer

In the present problem, the characteristic length of the
body, such as the platform length, is large, and the
viscosity of water is quite small, thus providing a
sufficiently large Reynolds number Re. The effect of
viscosity can therefore be neglected with a good
approximation without affecting the uplift pressure on the

platform,

Since the motion of a fluid at a large Reynolds
number approximates that of a completely inviscid fluiqd,
the assumption of irrotationality can be examined for the
case of inviscid fluids. According to Kelvin's
circulation theorem that has been established for an

inviscid incompressible fluid of uniform density, a body
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of inviscid fluid in irrotational motion continues to move
in a manner wholly irrotational. When the incident wave
propagates beneath and in contact with the platform, the
flow condition beneath the platform resembles the flow
between parallel plates. The main flew region can be
considered to be irrotational since the motion induced by
the incident surface wave before it strikes the platform
may be assumed to be irrotational and verticity diffuses

across the surface bounding the fluid cnly by viscosity.

The assumption that surface tensicon has a2 negligible
effect on pressure may be examined by considering fhe
Bernoulli equation with the surface tension term included.
The Bernoulli equation with surface tension for

two-dimensional case can be written as

P 1, 2 2 g
e + -+ —— =
o P e IO e ) Fant 5 =0

where o is the surface tension per unit length and r 1is
the radius of curvature of the interface. The importance
of surface tension is usually expressed by a Weber, number
which is a ratio of internal forces to surface tension
force, i.e.,

DUZL

g

We =

where U is a velocity characteristic and L 1is a length
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characteristic. When the Weber number, We, becomes large,
the relative importance of surface tension force becomes
very small compared with inertial force. The effect of
surface tension is to increase the propagation speed of
the wave, but for long waves the effect of surface tension

can generally be neglected (Weigel, 1964, pp. 60).

For a platform of moderate geometric length scale,
the Weber number We is sufficiently large and therefore
the effect of surface tension force is negligible. Also,
when a wave is propagating beneath and in contact with the
platforﬁ, the radius of curvature of the interface ;f
water is infinite for a smooth and horizontal platform, so
the surface tension term can be neglected in Bernoulli

equations with a good approximation.

Because of presence of friction and turbulence in the
real case, there is always some effect of air bubble
entrainment in the flow near the interface. Air bubbles
entrained in the flow may cause some energy dissipation,
as in a hydraulic jump in an open channel. This can be

reduced by employing incident waves of moderate amplitude.

38




CHAPTER 4

NUMERICAL ANALYSIS

FINITE ELEMENT FORMULATION

The finite element me thod is a numerical
approximation method of solving partial differential
equations of boundary and initial value problems. This
method was originally developed for structural problems,
and its application was latér expanded to nonstructural
problems such as those involving fluid. Potential flow
problems using finite element metho& was first initiated

by Zienkiewicz (1977).

In the finite élement analysis, the flow field 1is
divided into small subreqions called finite elements.
These elements may be of variable sizes and shapes and
their behavior 18 modeled adequately by writing
differential equation as a linear combination of
appropriate interpolation functions at nodes. Variational
principles or weighted residual method are wusually used
for discretization of governing equations for local
elements. Finally, these local elements are assembled to
form a global system of differential or algebraic

equations. Then the nodal values of the variables are
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computed from the resulting system of equations.

4.1 Discretization of Physical Domain

For infinite flow domains, such as long channels, it
is necessary to establish the -significant zones to be
included in the finite element discretiiation. This will
involve determination of the geometrical extents of the
zones and of adequate flow conditions on the discretized
boundaries. For propagation of a solitary wave, it is
assumed that its amplitude is zero for a small ratio of
n/H, then the flow region could be considered undisturbed
beyond the effective wave length of the solitary wave.
The criteria for the evaluation of significant extents is
then based on the distance of wave propagation. For
discretization of the flow domains, we first consider a
bounded domain that can be extended to a larger domain,

simply by increasing the number of finite element modes.

In order to construct the finite element model for
our problem, the region is discretized into six-node
finite elements, (two midside nodes), either entirely into
uniform or nonuniform generic length Ax. The curved-free
surface - boundary is approximated with straight-line
segments to avoid the poor curve fitting properties of

higher order polynomials, The ordinates of elements
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represent the location of the free surface boundary. A
typical finite element mesh for the flow region 1is shown

in Fig. 4.1.

To develop a technique for handling the free surface
motion, 1isoparametric finite element mapping is used to
transform the physical domain into a regular nodal domain,
Isoparametric is one of the natural coordinates since it
Qses nondimensionalized ccordinates. The reason for using
isoparametric element 1is derived from the fact that the
same parametric function which describes the geometry may
be used for interpolation of unknown functions within an
element. Isoparametric mapping provides a one-to-one
correspondence between the local coordinate (£,n) and the
global <Cartesian coordinate (x,y}. Eéch element .is
related to parent element whose intrinsic coordinates
(¢,n) lie in the domain (-1,+1). For each -element, the
coordinate transformation between the physical and parent

element is given by

N

X = Z'{'i(ﬁm)xi {4.1a)
i=1
N

< = Z“’i‘g'”’yi (4.1b)
i=1

Where x,y are the coordinates of any point of the
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element and x , y , i=1,...,6 are the glqbal'coordinates
of the element modes. The interpolation function V¥j are
given in terms of the local coordinates to which a set of
global Cartesian coordinates will correspond., The
fundamental property of the interpolation function ¥; is
that its value in the natural coordinate of system is

unity at node i and is zero at all other nodes.

To construct the interpolation functions
corresponding to the six-node elements in the physical
domain, Lagrange interpolation tensor product 1is used,
since rectangular types of elements (Lagrange family) ére
employed in the parent plane. This can be achieved by
simple products of appropriate Lagrange polynomials in the
two coordinates. Thus, in two dimension, if we label the
node by its column and row number, I,J, we obtain

¥i(&,m) = ¥ (E,n) = aT(£)BY(n)
Where n and m are the number of subdivisions in each

direction,and

n (£-£.)
n K
a (E) = n T
T k=1 (B Eg) (4.2a)
K#AT
m (n-n.,)
BT (n) = T 4 (4.2b)
J Mnl(”J-nMs
M#J
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with T denoting a product of the binomials of Eq. (4.2)

over the range of K and M.

Consider the typical element in physical domain and
its transform in parent plane shown in Fig, 4.2. With

this configuration, the shape functions

P 3 (&=£,) (n=n,)

K=l M=l {({_~£_)(n.-n.,)
K¥I Mpg T K J M

Y13 =

will take the following forms:

¥ (E,n) = 3 n(n+l) (1-6)
¥,(E,n) = F n(n+l) (1+€)
¥3(E,n) ==F (n+1) (n=1) (1=E)

(4.3)
¢, (E,n)= =3(n+l) (n-1) (1+£)

Yo (E,m) = Fn(n~1) (1-§)

¥ (E,n) = Fn(n-1) (1+£)

The midside node numbers 3, and 4 c¢orresponding to the
straight sides can be omitted by setting the corresponding

interpolation functions equal to zero.

4.2 Transformation of Governing Equations
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To perform finite element discretization, the
governing equations in a global physical element must be
written in terms of the local isoparametric coordinate
(E,n). This requires that the following coordinate
transformation of derivative be invoked. From the chain
rule, we write

b Tk XMy Yk

= +
¢ n ¢rx xr ¢ry Y

’ n T
or in a matrix form

¢r€ : ¢,x

= [J]

¢fn ¢!Y
and inverted as

¢ _ ¢

!x - [J] 1 \ lg‘

tbrY ¢:ﬂ (4.4)

where [J] is the Jacobian matrix

(31 =

Here the derivatives ¢ xand ¢ are determined from the
!

¥
inverse of the Jacobian and the derivatives ¢ Eand o -
’ e M
The numerical values of coefficients in [J] can be found
from the coordinate transformation (Egq. (4.1)) along with

the corresponding shape functions (Eq. (4.3)).
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The transformation between local isoparametric and
global derivatives can now be found by substituting
Eq. (4.1) into the inverted chain rule (Eq. (4.4)), using

the corresponding shape functions (Eq. (4.3)).

After substitutions and operations, the Jacobian

matrix is found to be

AX
vam— 0
gy = |2
Lin+l) (b ~h ) Xh (1-£)+:h_ . (1+
i bl P! T ey (1+E)

Since mapping the equations from the physical domain
to the parent plane involves transformation of the secoﬁd
derivatives, it is necessary to determine the higher
derivatives of the coordinate transformation functions.
This can be done by direct differentiation of the
coefficients in the .inverted Jacobian matrix, which is

defined as

1
L Fh (-g)+n, o asen o fe e o
(317 = Fee-Ta7T B (4.5)
Lint1) (b -h ) Axf N p M
4 m+l “m 2 DY

Then the differentiation of coefficients in the Jacecbian

matrix gives

Sax T ) Sy = °
r (h_,,-h )2 (n+1) ) e
n - (A 3) 2 ,xx 0 )
mx 8x% Llh (L-g)+h . (1+£)]
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The transformation of higher derivatives can then be

carried out as
2

2
¢rxx =¢:€EE:X+2¢.EH£:X nr X+¢:nnnvx+¢:éj€:xx+¢mn

and so on. Therefore, Eqs. (3.4) through (3.6) become

2 2
E ¢IEE+( +n'y)¢'nn+2£'xn'x¢'€n+n'xx¢'n = () (4.7a)
]. 2 .2 12 2
o Lt EE ¢ ,E 2'1 ¢ "'fn'y ¢’n+5'xn'x¢'E¢'n+g(h-d)=0 (4.7b)

h t+€,x ,eb g*n xE,x¢’nh'€-n'y ¢ =0 (¢.7c)
In this set of equations, n{(x,t), representing the free
surface displacement, has been replaced by the terms
(h-d), where h is the free surface height measured from he
bottom, and d 1is the still water depth. The bottom
boundary condition is a natural type of boundary condition
that is automaticall} satisfied as a part of the finite
element formulation; so, we simply drop this boundary

condition.

The transformed governing equations have more

complicated forms than the original governing differential
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equations with the advantage that the solution region has
a regular rectangular shape in the parent plane. The
hidden nonlinearity of the moving free surface 1is no
longer a problem 1in the transformed plane, because the
free surface boundary has been mapped into straight—lihe
segments in the isoparametric plane whose positions have
an ordinate of +1 in terms of the natural coordinate. We
could generalize the finite element mesh by increasing the
number of nodes through the depth, since for a large water
depth three nodes may not be enough to model the fiow
hydrodynamics. This can be done Dby regarding each
rectangular cell in the parent computational domain
(Fig. 4.3) as being separately mapped by a local bilinear
mapping to a new isoparametric plane. This idea was first
presented by Jameson and Caughey {(1977) for transonic
potential flow calculation using the finite volume method.
Finite volume methods use general non-orthogonal
coordinates and consider the governing integral equations
as balances of mass, momentum and energy fluxes for each
finite volume defined by the intersection of the
coordinate surfaces, Jameson and Caughey (1977} applied
the finite volume method to the steady full-potential
equations by using mixed-type flux operators. Instead of

assuming a single mapping of the entire region, they used
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a separate mapping for each rectangular cell in

computational domain.

Consider the typical rectangular cell in the
transformed plane which can be subdivided by four-node
standard isoparametric elements (Fig. 4.4). The

coordinate transformation is given by

4

£ = i;lvift'.n)ai
4 — —

n = igl‘f"i(ﬁ,n)ni

where £ and n are the coordinates of any point of the
element, and Ei, ny v i=1,...,4 are the global cobrdinatés
of the element nodes. Thg interpolation functions for a
standard four-node isoparametric element are defined as

follows:

w—

L(ET) = F(1-T) (1-7)
JE M = $(14E) (1-m)
¥, (M = (14D (147)
7, (E,M = $(1-T) (1+7)

where the local coordinates (E,;) vary on the interval
(-1,+1).

To write the differential equations in terms of the
new system of coordinates, we use the chain rule. Then,

in a matrix form, we obtain
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I¢.ﬁ

and inverted as
:‘M}
¢'n

where [J] is the

=.-1 {7
(3) 1{ '55_
*n

Jacobian of transformation given as

gr.g E'ﬁ 1 . 0
1] - -
Ah
n,g L 0 ——
and
E'E E'n ' %f 0
-1 £
a7 = |._ . = AR
an n'n 0 1
where Ah is defined as ﬁ; -El and is given by
ah 2
NRow - 1
NROW = number of nodes chosen through the depth.
The transformed governing differential, Eqgs. (3.7a)

through (4.7c)

following form

AKM ¢,£—E— + BKMCb,ﬁﬁ + CKMCP,EE + DKMd”ﬁ = 0
b0 * LA 02 + 3B 0% 4 3 0,20,5 + G(h-d) = O
't fAKM r E 2 KMTr zCKM tE7n -

in this new computational plane, take the

(4.9)

(4.10)
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- - - - = (4.11)
h,t + AKMhrE¢:£ + HKM¢'nhrE GKM¢'n 0

where the coefficients are
AKM = Erx

B

n

]
N3
e B
~ "
W
ha |
~
0 o~
]

Deyy = Nyl

Gymy = n,yQ
and Hey < ",xs,xQ

Q = A, = -—i-ﬁ—

As can be seen, the governing differential equations in
the physical plane are transformed to variable coefficient
differential equations in an isoparametric computational
domain. The finite element formulation of the
differential equations can be performed by evaluating the
coefficients at the center of each element in terms of the
global coordinates. These local elements can then be
collected together to form a global system of differential

equations.

4.3 Finite Element Solution Algorithm

As shown previously, the entire water domain 1is
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decomposed into subdomains with isoparametric
transformations. The governing differential equations are
transformed to the parent computational domain. I[n order
to derive the discrete form of this set of differential
equations, we must employ a finite element approximation
technique. In one approach, a functional is defined by
some integral over the entire domain and its boundary, in
which the unknowns and their derivatives appear. [n this
approach, the discrete equations are obtained by
introducing the approximate solutions of unknowns in terms
of a set of interpolation functions and the determination
of the extreme values of integrals. Extension to the
non-;inear poténtial flow problem, 1like our present
problem, using variational concepts appeared theoretically

difficult without certain assumptions.

A second approach requires prior knowledge of- the
differential equations governing the problem. The finite
element approximation can then be derived directly from
the differential equation by the methods of weighted
residual, The basic 1idea 1is to find an approximate
solution by replacing the unknown variables with a set of
functions in terms of nodal values and appropriate
interpolation functions. The orthogonal projections of

the residual with a set of weighting functions are then
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constructed and set equal to zero, which is equivalent to
forcing the error of the approximate differential equation
to be zero in an average sense. Various technigques can be
used such as the Galerkin method, least-squares method,
and colocation method. It has been verified that a method
of weighted residual for a linear equation produces a
computational form that is identical to extremization of
the equivalent variational principle. However, since no
linearity c¢onstraint exists in the application of the
weighted residual method, it may be used for a finite

element solution of nonlinear equations,

In this section, the Galerkin finite element method
is used for the discretization of governing differential
equations. In the Galerkin method, the same shape
functions which approximate the unknown variables are used

as weighting functions.

Here, we employ a local finite element approach in
which approximating functions are constructed in locail
elements; thus, avoiding the difficult task of ' requiring

satisfaction of global boundary conditions.

To derive the element stiffness matrix corresponding
to the conventional Galerkin weighted residual method, the

same standard isoparametric shape functions of coordinate
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transformations are used to approximate the flow potential
field within the element in terms of potential function at

nodes 1 to 4 (Fig. 4.4a}

(e) 4 (e) _ _ (e)
¢ = Z F.(E,M ¢,(t) (4.12)
i=1 .

Here, fdr simplicity, we drop the summation symbol I and
the symbolic (e) denoting local elements. Since the
analysis will be performed 1in the parent computational
domain with the coordinate (E,n), we may also drop the bar
symbol (-} from the equations for simplicity in carrying
out the operations. Then the Galerkin finite element
model of the transformed Laplace equation (Eg. (4.9))

takes the form

111 -
LLAKM%EZEJ' Bem®ran * Cxmbren * Drw®, @880 = 0

As was previously mentioned, the coefficients 1in the
equation are evaluated at the center of the element, where
K and M represent the column and row number of the right
lower node of the element. To obtain a symmetric

stiffness matrix, the terms CkM¢'£n can be written as

1 1
Cxm 4 gn 7 %kmb7en ¥ 3%m%rne

By substituting this term into the integral and performing

integration by parts, we obtain

11 1 1
- 1. 104w
A Il j;lcggli’j’sdidn + BKMI;I f-ltb,nlvj'ndﬁdn +rcmf [8, % (9€an

-1 -1
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+ Cyy [1100, ¥ GEAN =Dy [ 129 ¥ dEdn (4.13)

+ Boundary Terms = 0

We drop the boundary terms since they will be cancelled
out 1n the global assembled stiffness matrix. By
introducing Eg. (4.12) into (4.13), we obtain the local

finite element equation

K..+ o = 0 (4,14)

where

Kij = Am g‘g‘t_.”gdﬁdw BKMI ill,n ] ndgd" +

2°1<M LU0 oYy, g9Ean *chnf_f (19, ¥y, ndean (4.15)
Bae Lo Ly ¥i,a%38 A0

For a typical'element, whose right lower node is numbered

by column K and row M, the element stiffness matrix can be

found by evaluating the integrals in the above expression.

This matrix is defined in Appendix A-1,

To establish the global finite element equations, we
should derive the globally assembled stiffness matrix.

This can be obtained by summing the 1individual stiffness
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matrices appropriately. A complete set of typical element
combinations for the flow region, except for the free
surface, is shown 1in Fig. 4.5. The equation for the
common node for each assembly of elements is derived .in
Appendix A-2, Having the free surface height and
distribution of the potential function over the free
surface, all the equations for the nodes can be collected
to form system of equations that define the values of at
the nodal points through the flow field. In later
sections, we 'develop a fast solution algorithms to solve a
system of linear equations resulting from the finite

element discretization of the governing equation.

4.4 Finite Element Solution Algorithm for the

Free Surface Equations

A major difficulty that has hindered progress in
long-term numerical computation of the equations of free
surface motion has been the nonlinear computational
instability of the numerical model of the governing
differential equations. Since this nonlinear instability
has its origin in space-truncation errors, we will be
concerned here with the proper form of a finite element

analog of the space derivatives.
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Several investigators have undertaken the use of
Galerkin techniques to solve this type of problem. These
include Easton and Catton (1972) and Wellford and Ganaba
(1981). In their work, only inviscid flows have been
analyzed and potenfial functions formulation have been
used. However, the inherent consistency of the Galerkin
method in handling the nonlinearity of the free surface
equations and matching of the egquations in the fluid

region is demonstrated in their work.

In our analysis, the approximate solutions of the
free surface equations are sought wusing the Galerkin
finite element method. Local models for the free surface
displacement h and potential function ¢ are defined by

standard isoparametric interpolation functions as

q;k(g’ n)¢k (4.26)

=2
i

and

fu
"

. . (4.27})
BJ(E)hJ

For simplicity, we dropped the summation symbol ¥ and the

symbol (e) denoting a local element.

In the above approximations, K=1,...,4 and j=1,2, and

®. and hj are nodal values for potential function and
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free surface height. The shape functions ?i(g,n) are

defined as before and
B1(£) %(1 -£)

B, (E) 2(1+8)
As a semidiscrete approximation for the dynamic free

surface condition (Eg. (4.10)), the following Galerkin

model is defined on a free surface element.

1o +1n 42 +1lp 42 .1 -
30,0+ Prdoe * 58%u0en * 750,00 * g(hﬂ)Llsid 0 (4.18)
A semidiscrete approximation for the kinematic free
surface condition (Eq. (4.11)) is defined using a similar
Galerkin model.

\ - - = 4.19
.J::{h,t+Am h,gd, g+ Hoy 6,0 r=Coy ¢, }n'lsi ag o )

By introducing Eqs. (4.16} and (4.17) into (4.18) and
(4.19), we obtain the local finite element equations for

the free surface boundary as

Mijd’j,t .== 1~Ii:h<1bj.¢1 + Pijhj +Q (4.,20)
,.h. = .. h. . b 4.21)
Rthth SlthJq’l ¥ Tl]¢3 (
- 1 2
vhere My B ¥ Jma®®

= <ln {1 21 1
Ni:'n 2 I-n [Biwj,awui]ml dé ‘Ez Kl‘d_{ 1[B:'ij.n]rsl dg

-3 %l [B1%3,¢% n ]t 96 |
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P.. = gf: BisjdE

i} =
= 1
o = gdf 8y
- 1 N .
Ry ‘[181 BJdE

ag
Sijt = .AKMli [BingsvlrE ]n=l -
B HKMI-: [Bisjgivhn ]r|=l dg

Ty = Sed; [B4%,0 Je®

Equations (4.20) and (4.21) represent approximate forms of

the dynamic and kinematic free surface equations.

The global finite element model of the free surface
can be obtained by proper assembling of the free surface
elements. Figure 4.6 presents typical groups of assembled
elements. The assembling of the elements is performed and
the resulting equations are shown in Appendix A-3. The
resulting equatiohs are nonlinear and coupled in terms of
the potential function ¢ and the free surface height h.
These equations can be integrated in time at a discrete
set of points, given a sufficient set of initial
conditions. Integration of the free surface boundary
equations through one time step leads to a new

distribution of potential function over a new free
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surface h. The current values of ¢ and h can then be used
to define the potential function through the flow region
by solving a linear system of equations (Eg. (A-1)).
Repeated applications of these computational steps in
seguence gives a construction of the motion of the free

surface as an initial value problem.

4.5 Numerical Integration of the Free Surface

Equations in Time

In this section, we discuss the numerical integration
of the time-dependent, free surface equations to advance ¢
and h in time,‘over the free surface boundary. The method
of solution considered for our problem treats
time-dependent, free surface boundary conditions as a set
of coupled initial problems. A major difficulty in
numerical integration of the free surface conditions is
the nonlinear computational instability and the coupling
of the free surface displacement and patential function.
Approximation  of derivatives by numerical methods
introduces truncation errors. These errors are amplified
by nonlinear terms and accumulate at large time,
eventually degrading the accuracy of the solution. To
overcome such difficulties, the proper choice of the

integration method and the time step must be employed to
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perform long computations.

The finite element discretization of the free surface

boundary conditions lead to discrete equations
(Egs. (4.20) and (4.21}). The element matrices Mij and
Rij are non-diagonal and can therefore be called
consistent mass matrices {analog-to-mass matrices

resulting from dynamic analysis of structural problems).
The consistent mass (non-diagonal) matrices introduce
coupling between the time rate-of-change of ¢ and h at
adjacent nodes which essentially demand the use of
implicit methods. It should be realized that the coupling
between the time derivatives of the nodal values of ¢ and
h resulting from finite element discretization 1is
different from the inherent coupling between the dynamic
and kinematic free surface conditions. In dynamic
analysis of structural problems, the relative speed and
simplicity of explicity methods has lead to the concept of
‘mass lumping. Mass lumping eliminates any coupling
between the time derivative of unknowns at adjacent nodes
and converts the mass matrix to a diagonal form. The
accuracy of the lumping technique usually depends on the
number of nodes used to describe the element, In some
problems, this approximation reduces the computer storage

and computational steps with only a small loss of
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accuracy. Gresho et al. (1978) employed mass lumping of]
the time derivative terms in applying the Galerkin finite
element to the advection-diffusion equation in an
incompressible flow field. Reasonably good success has

been reported in their work.

In our work, we employ a mass lumping technique in
which the procedure of lumping can be performed by summing
the rows of consistent mass matrix and placing the results
on the diagonal in the element mass matrix. [n terms of
global discrete equations (Eq. (A-2)), the mass lumping
can be invoked by summing the coefficient of the coupled
time-derivative terms and placing the results as the
coefficient of the time-derivative term ar the
computational node. -For instance, the left-hand side of

Egs. (A-2e) and (A-2f) can be written as

§-¢ o (K2, +-§- ¢ L (K-1M) + %—cpt(K,M) =40, (K-1,M (4.22)
1h w2m+ n 1w +in, &M = 2h(K-1,M) (4.23)
e JRL Al T Bt e A - el ’

We were primarily interested in finite element
approximation of spatial derivatives, and we applied a
semidiscrete finite element method in which the
independent variable t is not included in the shape

functions, and in which ¢the time derivatives of the
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variables at nodes are replaced by a finite difference
operator. Thus, a proper finite difference scheme must be
employed to avoid instability and inaccuracy in final

results.

Generally, the different schemes are classified as
explicit and implicit. 1In explicit methods, the solution
of an unknown at the new time step {(n+l)JAt 1is based on
using the information at the old time step nAt.
Considering the following differential equation

ut = Flu,t)
The time derivative can be replaced by finite differences

of various forms, such as,

up+1 = ¢+ A" (Forward difference)
where the superscripts refer to the time step. Using a
stability analysis, it can be shown that explicirt

integration schemes require the use of a time step At
smaller than a critical time step. thus, explicit
techniques are said to be conditionally stable, If a time
step larger than the critical time step is used, then any
errors resulting from the numerical integration or
round-off error calculation of spatial domain accumulate
and grow, resulting in inaccuracy of the final results.

Ancther class of integration schemes which are
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unconditionally stable are called implicit schemes. The
important role of wunconditionally stable integration is
derived from the fact that there 1is no restriction on
selecting the time step At to obtain accuracy in
integration, In some cases, time step for implicit method
can be selected at orders of magnitude larger than the
critical time step in the explicit method. The only
restriction on 4t for implicit representation is to keep
the truncation error at the reasonable level. In the
implicit method, the calculation of a new time increment
of an unknown requires knowledge of the previous time step
and the current time'step; for example,

un+1 = un + Fn+l

In this case, the function F(u,t) must be evaluated at the
new time step. Then one must solve a set of simultaneous
equations to obtain un+{ Although the implicit equation
has the advantage of accuracy and of permitting the use of
larger time step, it 1is no longer possible to solve the
resulting system of equations in a simple manner in
two~dimensional cases, One of the methods usually
employed in using implicit scheme 1s the
alternating-direction-implicit or ADI method. In this
method, calculations are simplified by preserving the

stability of the algorithm. The finite difference
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equations are reformulated so that the resulting algebraic
problem consists of a set of linear equations with a
tridiagonal matrix in each coordinate direction. Then,
each time step At 1is divided into halves, and each
half-step is used to solve the equation in each coordinate
direction, The two successive time step constitute a
cycle of the calculation. Fairweather and Navon (1980}
proposed a new ADI method for the approximate solution of

the shallow-water equations.

In the solution of the coupled. nonlinear partial
differential equations, as in the present problém,
implicit methods result in nonlinear algebraic equations
in terms of the free surface height h and velocity
potential ¢ which are coupled through the free surface
equations. Then, the solution to this set of nonlinear
algebraic 'equations requires extensive matrix
manipulations which may become very inefficient and

costly.

Explicit methods can be classified by the order of
accuracy of schemes. This can be shown by the development

of the Taylor series for U about (t,x), which gives

| 3
Dit+Atx) = U+ MU, + Lg-’!:—’zu.tt+o[ust)] (4.24)
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.

In a method of m™ -order of accuracy, the Taylor series
for the finite difference equation is identical to the
above expansion up to and including the term multiplied by
the mth power of the time increment. Euler-explicit or
the forward difference is simply the first-order

approximation

Usy L [ - o]+ o [ac]

]

where 0(At) represents the asymptotic notation for the
truncation error of this approximates. An example of a
second-order approximation is the central difference or
leap-frog which can be found by substracting the Taylor
series for u(t-At,x) and u(t+Atc,x). Another example of
second-oder approximation is the Lax-Wendroff time
integration scheme which can be obtained by retaining up
to -the second-order terms in expansion (Eq. {(4.24). In
this case, the computation of the values of ugt requires

a lot of computational time.

An integration with second-order accuracy does not
mean that its application will always result in a more
accurate technique than other first-order techniques,
Test calculation on several nonlinear problems reported by
Richtmyer and Mortor (1967) showed that the use of the

leap-frog scheme ylielded solutions which exploded
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exponentially, while for the corresponding linearized
problem the scheme showed stable or slightly unstable
behavior., They also showed that the leap-frog scheme,
even in the linearized case, is marginally stable. Easton
and cotton (1972) surveyed and used six integration
techniques for solving the nonlinear, transient motion of
a liquid with a free surface. The stability and
performance of integration schemes were checked by

monitoring the total energy of the system.

In the present study, we simulate the time
derivatives by the forward difference scheme which is the
most commonly used technique in explicit integration of

nonlinear fluid dynamic equations.

To define our integration model, we first rewrite the
discrete free surface equations in a simpler form. Using
ralations (4.22) and (4.23), Eqs. (A.2e) and (A.2f) can

be written as,

It

Fl(¢,h)

]

2h,, (K-1,M) Fy{(¢,h) _
where Fl(¢,h) and F2(¢,h) represent the right hand sides

of Eqs. (A.2e} and (A.2f).

The time integration of the above equations can be

obtained by wusing a forward difference procedure which
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assumes linear variations of potential functions ¢ and
free surface height h over the time step A4t. Thus, the

above equations may be replaced by the following algorithm

n+l

(k=1,m) - $7(k-1,m)] = F](4,h)

i [

and

2 n+l n ' n
E [h (K‘l,M) - h (K-lrM)] F2(¢:h)

where the value of n is increasing from 0 to the desired
location in the t coordinate. The above relations can be

rearranged as,

n At .n '
¢ (K-1,M) + - Fy(¢,h) (4.25)

o™ (k-1,m)

" (k-1,8) + &F F)(6,h)

n+l
h T (R-1,M) (4.26)

Since the right-hand sides of the above equations are
known at the start of the time interval (t,t+at),
BEqs. (4.25) and (4.26) can therefore be solved direcﬁly
for the nodal wvalues of ¢ and h at the end of the time

interval.

As was previously discussed, explicit schemes require
that the time step chosen be smaller than some critical At
determined in terms of the size of the other increments
for stability condition to prevent the accumulation of

truncation errors and round-off errors. In practice, 1f
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this condition 1is' not met, the symptoms of instability
show up in a small number of cycles. For linear and
constant coefficient differential equations, stability can
be determined by using Fourier method or matrix method.
But for nonlinear cases neither of these methods can be
used directly to study the stability without a prior
linearization. Courant, Friedrichs, and Lewy (1328) used
a finite difference approximation to linear wave
equations. Their stability condition which is called CFL
or Courant condition states that numerical wave speed
x/ At must be greater than the propagation speed.
vViolation of the Courant condition results in numerical
oscillations and exponentially growing instability in the
solution. This condition can also be used for nonlinear

propagating problem such that

Lx (4.27)
, At < NG
where ¢ is the propagation speed and N 1is an integer

number.

For a nondissipative problem, such as the present
one, the computational stability is more critical than is
the dissipative problem, since the viscosity itself will
damp  out some of the numerical oscillations, The

integration schemes with the first-order accuracy are

74




usually inadequate if a discontinuity or an abnormal

oscillation exist in the saclution.

4.6 Convergence and Accuracy

The accuracy and stability of the scheme is tested by
numerical experiments. A measure of the accuracy of a
numerical scheme is the accuracy with which quantities
that are conserved analytically are also conserved
numerically. In the present numerical model, since the
effects of viscosity and air entrainment are not included,
these conserved quantities are the volume and total energy

of the system,

The total energy of wave system consists of the
potential and kinetic energy components. To evaluate the
potential energy of a progressive wave per unit width, we
choose the horizontal bottom as datum and consider a small
column of water h high, and Ax long (Fig. 4.7a). Then the

potential enerqgy can be expressed as,

2
h + h
2 p)

A(P.E.)

Then,
NCOL
-

1 2
g;i g Yihy_p * Byl Ox

The kinetic energy of a small element Ax long, h

(P.E.)
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high, (Fig. ¢.7b)- and of wunit width and velocity

components u, v, 1s given by

A{K.E.) = %‘;} (Ui + Vri) Ahp, A
or
h + h
_ ly 2 2 m=-1 m
A(K.E.) = i 3 (Um + vm)[ Z (NRow-1) ] hx
Thus, NCOL
1y BN B
A(K.E.) = Fgo o Up * V)| BRow =T J %%
mn=

where vy is the specific weight of water.

The numerical experiments involve first setting up
the 1initial conditions for a solitary wave with height H
and some specified wave length. Then, the shape of the
wave for some propagation period 1is examined, and the
ratios of initial-to-final volumes and 1initial-to-final
energies are calculated. The time step is reduced using
the CFL conditions until there is no oscillation 1in the
wave shape and the ratios of volumes and energies have a

high degree of accuracy.

For numerical purposes, the amplitude of a solitary
wave is assumed to be zerc where the ratio of wave height
to maximum amplitude is less than 0.01. Considering the

Boussinesqg solitary wave profile
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Fig. 4.7 Definition sketch for kinetic and
potential energy.
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nx,t) = H Seh (x=-ct) {4.28)

o L2
2 |'.'I:

where

C = Vg(dﬂ-{)

The finite length of the wave can be defined as,

- 5.98
L - K
where
31 H
K - —
I d3

To advance the free surface location and velocity
potential in time, we should define the initial free
surface profile as well as the initial velocity potential
distribution over the free surface boundary. The velocity
potential over the free surface can be derived by

integration of horizontal or vertical velocity components.

The wave profile (Eq., (4.28)) can be written as

§ seh? -g— (x-ct)

n

where
. [3®
o = 73 (4.29)

In shallow water to the first-order approximation, the

horizontal water particle velocity can be expressed as,
u = gc (4.30)

While the vertical velocity v 1s approximately 3n/ot.
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Hence, by using the velocity potential definition and the
above approximations, the expression for the velocity

potential over the free surface can be obtained as,

- CH ax
¢ — tanh -3

The nodal spacing can be found by selecting the
number of nodes, NX, over which the wave is described.

This can be shown as,

A = W

The time step At ¢an be determined from Eg, (4.23)

as,

At = Ax - (4.31)

N Vg(H+d)

where N is an integer number which should be determined

from the numerical experiments.

In Chapter 6, the numerical stability of the wave
system is tested by numerical experiments. A test program
is chosen to present propagation of a solitary wave for
different time increments (different CFL numbers). The
optimum At is obtained by using the relation (4.31) and
reducing At until the result of the numerical experiment

does not change significantly.
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As noted in Chapter 6, the convergence and numerical
stability of the numerical model 1is obtained only for
small value of time increment At, This 1implies that a
substantial computational work is required for propagation
of a solitary wave for large times, since each time step
involves the solution of the algebraic system of equations
resulting from the global form of Egq. (4.14). The
computational time can be reduced by developing a

fast-solver algorithm for the present model.

in Section 4.8, we will discuss different methods for
solution of an algebraic system of equations resulting
from finite element discretization and will develop a

multi~grid algorithm for the present model.

4.7 Artificial Viscosity Effects

As indicated in Chapter 6, the sequence of wave
impact on a horizontal platform is studied and described
by the numerical model. An initial solitary wave of
height H propagates through the still-water depth d, and
reaches the horizontal platform mounted a distance, s,
above the still water level. The undisturbed wave front,
where water first wets the platform, propagates beneath
the platform, while the high vertical front face of the

platform causes a jet of fluid to shoot upward. As the
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wave advances further, the height of run-up created by the
platform has grbwn wider, and reflected wave train can be
formed at the front edge of the platform. This
discontinuity in the free surface profile causes a severe
oscillation at the front face of the platform for the

larger time.

As previously mentioned, in non-dissipative,
nonlinear probléms, any symptom of discontinuity in the
solution may be amplified by nonlinear terms and may
accumulate at large time, eventually degrading the
accuracy of the soclution. The oscillation in regions of
rapid change, such as the front face of the platform,
could be related to the nonlinearities or the ripid

variation of the coefficients.

Several investigators have studied similar problems
for treatment of shock waves in gas dynamics and
interfaces separating two different f{luid, von Neumann
and Richmyer {1950) discussed an approximate method of
calculation for fluid dynamic problems in which a
dissipative mechanism like viscosity or heat conduction is
introduced into the governing equations to smboth the
shock transition. In this method, the surface of

discontinuity is replaced by a thin transition layer 1in
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which quantities change rapidly, but not discontinuously.
According to Richmyer (1967), the problem of flow between
a detached shock and a rectangular body was investigated
by Berstein. 1In this problem, there are two regions of
very rapid change - the shock layer and the neighborhood
of the corner of the body, where the flow changes rapidly
from subsonic to supersonic. The calculation is found to
be unstable in both regions unless a viscosity term 1is
included 1in the equations. The Lax-Wendroff treatment of
shock waves (1960) was based on the idea of constructing a
difference scheme as a means of containing the effect of
viscosity. They developed and used difference schemes for
systems of conservation laws by including an additional
quadratic operator in the equations. Hafez et al. (1978)
studied the effect of artificial viscosity to smooth out a
shock wave, by employing a Galerkin finite element
procedure to the transonic equation with an additional

artificial viscosity term.

In accordance with the form of the free surface
equation, we may include an artificial viscosity term

vh'xx in the kinematic free surface equation, i.e.,

h;t + ¢rthx - ¢,y N vh:xx = 0

where v is a positive artificial viscosity parameter. For
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relatiﬁely small Vv, the viscous term will be effective
only where Ih,xxi is large. It should be pointed out that
the artificial viscosity term does not represent any loss
of energy or other conserved quantities. Thus, the
presence of the artificial viscosity term does not alter

the stability of the wusual algorithm for smooth fluid

flow.

The above equations can be expressed 1in terms of
parent computational coordinates as,
hrt + AKMhrE¢rE + HKM ¢‘nh'5 - GKM¢:n - EKMh'EE = 0
where
E = vEZ
KM rx

and Agm ’ HKM' and GKM are defined as before.

Employing the same procedure as was used to develop
Eq. (4.19), the following Galerkin model is defined as,

1
LA, etBab g0, 6+ Bg®ooh, e=Ciai B, £e ey 8146 = =
After integration by parts, we get

1 - 1 _
f_li(“.t+%;h.g¢,g+f§m¢,nh,g G 1 }n___lﬂid&LEml'l,EBi,gdaB.T. 0

We simply drop the boundary terms, ;ince they will be
cancelled out in the global form of the free surface
equations. By introducing Egs. (4.16) and (4.17) into
the above equations, we obtain the local finite element

equation for the kinematic boundary condition with the
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artificial viscosity included.

Rijhj't = Sijlhjd)l + Tij¢j + Zij°hj
where
2y = "B 2 BugByp &
Employing the same procedure as was used for Eq. (4.,21),
the assembling, mass-lumping, and explicit temporal

discretization for the artificial viscosity analogue of

the free surface equation can be obtained.

The numerical value of the artificial viscosity
parameter is determined by numerical experiments. In
Chapter 6, the numerical results for the free surface
profile with aﬁd without the artificial viscosity term are

presented and discussed in detail.

4.8 Solution Methods for Discrete Equations

The finite element discretization procedures result
tn a system of linear of nonlinear algebraic equations
which must be solved by numerical techniques. Linear
equations are solved either by direct or iterative methods
to obtain solutions to the system of linear equations
resulting from- the finite element discretization.
Nonlinear problems are analyzed by iterative methods, or
sequences of direct or iterative procedures. Even in

solving nonlinear systems of equations, we can often
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approximate the nonlinear system with a sequence of linear
equations, as in Newton's method. Solving a linear system
of equations can be generally categorized either by the
direct method which yields solutions in a finite and
predictable numbers of operations, or by the indirect or
iterative techniques that start from a first approximate
solution and become more accurate when the number of
iterations increases until a sufficient accurate solution
is obtained, [terative methods are preferred for large
sparse systems of equations where direct methods are
suitable for quite large sets of equations having handed
coefficient matrices. Both solution schemes has certain

advantages and disadvantages.

The most effective direct solution algorithms wused
are applications of Gaussian elimination procedures for
solving systems of algebraic equations. However, the
effectiveness in finite element analysis depends on the
properties of the finite element stiffness matrices.
These techniques have proved to be particularly effective
when the stiffness matrices resulting from finite element
discretizations are symmetric and positive definite, and
when bandwidths are small compared to the total number of

equations,
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In using direct methods for solving a system of
linear equations  resulting from finite element
discretizations, the active column solution, or the
skyline reduction method can be wused to improve the
efficiency of the direct Gaussian elimination procedures.
It is an advantage of the finite element analysis that the
resulting stiffness matrices are not only symmetric and
positive definite but also handed,. In active column
solution algorithm, no operations are performed on zero
elements outside the skyline. Another direct method used
in solving a system of linear equations resulting from
finite element discretization is  known as Choleski's
method. It is only suitable for the solution of positive
definite systems for which all diagonal elements are
positive. In Choleski's method, there is a factorization
that can be carried out without any need for pivoting or
scaling, which decomposes the coefficient matrix into a
lower triangular matrix that can be related to a symmetric

version of Gaussian elimination.

The wave front or frontal method is also  an
implementation of Gaussian elimination in which instead of
assembling the complete stiffness matrix, it combines the
aésemhly and elimination phases of the analysis before the

entire set of the coefficient matrix 1is formed. In a
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frontal algorithm, the efficiency of the method depends on
the effectiveness of bookkeeping and not on the algorithm,.
It has the disadvantage of requiring high computer storage

necessary for large systems.

In structural models, substructuring techniques such
as static condensation procedures are used to reduce the
order of the system matrices by the elimination of
internal variables within the substructures, and the
assembling of the substructural models containing only the
variables on the boundaries of substructures to define the
final system of equations. In condensing out the internal
variables within the substructure, part of the total

Gaussian solution is carried out.

For linear systems that are too large to solve by the
direct method because of the storage required, the
iterative technique is often the only possible method of
solution. [t 1is also an effective scheme 1n problems
where a model is reanalyzed with slight changes (e.g.,
time-dependent problems). Then the previously obtained
solution is a good starting approximation for the solution
of new systems of equations. Another advantage of
iterative method is that there is a no need to form the

complete stiffness matrix because the iteration sweep can
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be carried out over the element level. Iterative methods
have been found to be suitable schemes for solving systems
of equations resulting from finite difference and finite

element discretizations of fluid mechanics problems.

There are basically two classical lteration
methods - Gauss-Jacobi and Gauss-Siedel methods - that are
applicable in finite element analysis. In the
Gauss-Siedel method, unlike the Gauss-Jacobi, as each new
value of an unknown is computed it replaces the old value.
In iterative methods, only oné.computer storage location
is required for each unknown, and the iteration is stopped
when a convergence criterion (for certain error tolerance)-
is satisfied. The number of iterations depends on the
accuracy of the starting apprdximation and on the
condition number of the stiffness matrix. Convergence of
iterative methods does not depend on the initial gquess for
starting approximations; it depends on the character of

the equations.

To improve the convergence rate of the fundamental
iterative methods, various schemes have been employed
since most iterative methods have a regular pattern in
which the error decreases. The relaxation is usually used

to accelerate the convergence. In this method, a
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relaxation paraﬁeter w is introduced to modify the value
of each unknown, by Gauss-Siedel 1iteration, before the
value is stored for the next iteration. The calculation
of » is difficult except in simple cases, and it is
usually obtained Dby trial and error, In the
successive-over-relaxation (SOR) technique, the value of w
is chosen greater than one but less than two and it is
usually employed to accelerate an already convergent

iterative algorithms.

Similarly, other methods such as the line relaxation
prbcedure and the alternating direction implicit technique
have frequently been used in finite difference
discretizations, but they have not been employed in finite
element analysis, in particular, because of 1irregular
meshes characteristic. This is because the line
relaxation and ADI methods are wusually used 1in simple

geometrical mesh patterns.

Recently, another method called the multi-grid mechod
has been proposed to accelerate the convergence rate of
the basic iterative algorithm by using coarser grids on
the same domain of the problem to eliminate the low
frequency of the errors, and relaxing on finer grids to

smooth high-frequency errors. I[n this method, the overall
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error of the iterative scheme is reduced at a rapid rate.
This method has gained a great attention in finite

difference discretization of differential eguations.

Later in this section, we will discuss the basic idea
of the multi-grid method and construct an efficient
multi-grid algorithm for our problem. To investigative
the convergence properties of the multi-grid method, the
basic Gauss-Seidel and SOR methods are also discussed for

the purpose of comparison,

4.8.1 Successive-Qver-Relaxation Method

The successive-over-relation {(SOR) method basically
consists of a single modification of Gauss-Seidel's method
by introducing a relaxation parameter in operational
equations. For example, we consider the system of linear
equations

AX = B

The point relaxation operational equation can be defined
as
x (K*D) = %K wr (K+1)
i i i

where the residual, R, is defined by

*
(K+1) - (K+1) _ K

where (K+1) is the «current 1iteraticon and (K) 1is the
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*
. . . . K+1)".
preceding iteration, the quantity x( )ls the current

approximate solution obtained by Gauss-Seidel iteration,
and w is an arbitrary parameter in the range l<w:2 for SOR
method. The optimum value of w should be chosen such that
the convergence rate is maximized. The optimum relaxation
parameter is usually found by trial and error for a
particular problem. For w=1l, the method obviously reduces

to Gauss-Seidel's method.

The sqccessive relation method was discussed and used
by Lomex and Steger (1975), Fix and Larsen {(1371) to solve
linear systems of equétions arising from elliptic
boundary-value problems, Fix and Larsen (1971) stated
that if , the relaxation parameter has its optimum value
for a particular problem, SOR iteration for finite-element
systems converged like the SOR iteration  for

finite-difference equations.

In the present problem, the value of optimum ¢ 1is
found by a series of numerical experiments in the test
problems. Then the convergence rate of the scheme will be

compared with multi-grid method.

4,.8,.2 Multi-Grid Method

The idea of the multi-grid is to employ not only a
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fine Qrid for the domain of the domain but a sequence of
coarser grids. This method employs periodic interruption
of the iterative solution on a fine grid to eliminate the
low-frequency error by solution of residual equations on
coarser grids, to speed the convergence of the relaxation
scheme which involve the final solution of unknowns on the
finest grids. The multi-grid method is particularly
effective for second-order elliptic equations, since the
error reduction for this class of problem is proportional

to the number of grid points.

The solution of the large systems of equations,
arising from finite element discretization, is actually an
approximations to the exact solution of the governing
partial differential equation. Then, the system of
equations can itself be approximated by a smalier system
of equations defined on coarser grids. This numerical
algorithm can be carried out for an algebraic system of
equations resulting from the application of finite element
discretizations with Drichlet and  Neumann boundary
conditions, with no restrictions on shape functions
normally required by - the finite element methods.
Acceleration techniques wusing multi-grid methods were
introduced by several investigators, including Sattari and

Aziz (1973), who generalized additive correction methods

92




for the iterative solution of matrix equations resulting
from finite difference discretizations of elliptic and
parabolic partial differential equations; by Wachspress
(1977), who described a two-level acceleration techniques
using variational methods; by Nicolaides (1975, 1977} who
proposed a convergent algorithm wusing multiple-grid
techniques for solving elliptic equations; and by Brandt
(1977) who developed and used a multi-level technique for
the solution of algebraic equations resulting from

discretization of boundary value problems.

The technique used in our work 'is of multi-qrid type
that was introduced by Brandt (1977) and used for the
finite difference cases. We will demonstrate the
workability of the multi-grid scheme in solving a linear
system of algebraic equations resulting form finite
element discretization. We will compare the convergence

rate of this method with other methods, such as, SOR.

To illustrate the multi-grid idea, we consider the

following boundary value problem
LU(x) G(x) in

li

AU(x) H(x} on the boundary af
where L and A are linear differential operators in the

domain f and on the boundary 3%.
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Let the entire domain Q be divided into K
nonoverlapping subdomains, with corresponding mesh size

D Then for different grid size Dy, we have a set of

K
grids Sﬂ(approximating the domain, Let QK be a grid and

with D.y> Dg, so that QK is a subgrid of QK-l'

Finite element approximation of the differential
equation leads to a system of discrete equations of the

form,

]
&

AU (4.}2)
where A is the coefficient matrix or stiffness matrix and

F is the right-hand side vector.

In our physical problem, we are interested in the
solution of this discrete system of equations on the
finest grid @y. The objective of the multi-grid technique
is the elimination of low-frequency error components by
the use of coarser grid operations, which involves
solution of much smaller algebraic equations and then
interpolating the solution from the coarser grid to a fine
grid to smooth out hxgh-frequency error components. To
construct the most efficient algorithm, the said

suggestion can be modified for different problems, but the
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main concept is a valid one.

Let uK be an approximate solution to the problem on
any grid Qg found by the relaxation method. Then the

residuals can be defined as

T = Awu -F (4.33)

The residual functions can be used to find the correction

vK which satisfies the residual equations
AvE = oK (4.34)

then the exact discrete solution is

o =2 K YK (4.35)

Now, if we could solve Eq. (4.34) with some inexpensive
operations, then . the correction obtained can be

interpolated to a good approximaticon to solve Eq. (4.32).

To carry out the solution of residual equations,
coarser grids are used with projection of residuals from
fine grids to coarser grids. The projection of residuals
will result in a meaningful approximation on coarser grids
if the residuals are not rapidly fluctuating on the fine
grid. This can be done by relaxation sweep on the fine

grid to smooth out the high-frequency error since as long
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as the relaxation on the fine grid exhibits fast
convergence the residuals are not smoothed out, and as
soon as the residuals are smoothed out, the convergence

rate decreases.

The criteria for slow convergence rates may be
determined by error analysis. Consider

K. K

afu = fX

Suppose there exist a diagonal matrix N and a matrix M

such that

Nk X o+ mfuk (4.36)

then, the operational equations for the relaxation sweep

can be defined as

K K - K K K
U(m+1) = F©" + Mu

(m) (4.37)

N

then the error is found by substracting Eq. {(4.37) from

Eq. (4.36) as

K K - K K
or
R
e - K K
{m+1) = E ' (m)
where
Y = whHTl WK
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The rate of convergence of Eg. (4.36) depends on the
eigenvalues and eigenvectors of E ., But, practically, the
behavior of the error is simple for algebraic equations
resulting from elliptic equations, and usually after a few
relaxation sweeps, the size of any error norm decreases by
approximately a constant factor at each step. The slow
convergence criterion is independent of mesh size and may
be found by trial and error on a coarse grid (Brandt

1977).

In the current study, the slow convergence criteriqn,
C, is determined by numerical experiments. Then, a switch

to a coarse grid is made if

191y = VI

(m+1) {m) 5 C {4.38)
k

4] - U

¥ = Ymen) ||

where the norm used is a L, norm.

For solving algebraic system of equations resulting
from elliptic eguations with variable coefficients, the
value of C varies over the computational domain since L,
norm of the error varies for each node. Then, to make

sure that all the high frequency of error components are

smoothed out, the largest value of C should be used.

Several numerical experiments were performed to find

the approximate value of C, This was done by using a
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series of trial values for C. Then the effectiveness of
the coarse grid corrections were examined by checking the
performance of the fine-grid algorithm., It was found that
the overall efficiency of the algorithm was not very

sensitive to a range of values near the optimal C.

As was previously discussed, the residual equations
are fully solved on the coarse grid, and the solution of
the coarse grid problem is then used to update the related
fine-grid iterate solution by an additive correction
scheme. This is done to eliﬁinate the low-frequency ‘of
the error components. To increase the efficiency of the
algorithm, we should detect when these low-frequency
errors are eliminated, and stop the tteration on the

coarse grid when some convergence criterion is met.

A crude node analysis by Brandt (1977) showed that
iteration on coarse grid can be stopped when the

following convergence criterion is met.

K K K+1 K+1
”u(m"'l) - u{m) “ <y I'u(m+1) = u(m) “ (4.39)

where these norms are comparable norms, such as Lo L,
and the constant y can be found by trial and error and is
independent of the mesh size. To find the optimum value

of Y, several trial values of Y are used in the numerical
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experiment to detect the situation at which more

improvement is obtained by relaxation on the fine grid.

Efficiency of the algorithm was examined for
different values of Y. It was found that the efficiency

is not very sensitive to values in a range of optimum Y,

The interaction between different  levels in
multi-grid method involves projecting residuals from a
fine grid to next coarser grid and transferring
corrections from a coarse grid to the next finer grid.
For algebraic systems of equations resulting from finite
difference discretizations, the interpolation used should
involve proper weights that do not convert small
low-frequency errors 1into large high-frequency errors.
Brandt (1977) stated that the order of interpolations from
a coarse _qrid to a fine grid, 15-1- should not be less
than the order of the differential equations and the
polynomial interpolation should be made with polynomials
of degree > n-1, where n is the degree of differential
equation, Otherwiseé, even a small and smooth residual may
produce large high-frequency residuals which involve more
computational work to smooth them out. This effect was

supported by numerical experiments.
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For a system of equations arising from finite element
discretizations, the interpolation of corrections from a
coarse grid éo a fine grid is a simple transfer of
identical nodal wvalues, since interpolation procedures
follow automatically from the variational formulation and

the fact that grid QK is a subspace of QK—I

The interpclation of residuals from a fine grid to
the next <coarser grid can be performed by some weighted

average of the residuals in neighboring nodes on a fine

grid identical to the next coarser grid nodes. That is,

K-l L K-l K KK

In our work the trivial weighting is used because it
requires the computation of residuals f only at the
coarser grid @;_;, points, But, nontrivial weighting
requires computation of the residuals at all Qy points

which increases the computational time.

Numerical experiments were also performed for
nontrivial weighting interpolations but no improvement was

obtained.

4.8.3 Multi-Grid Algorithm and Iterative Procedure

In this section, steps taken 1in carrying out the
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multi-grid procedure are defined and a typical flowchart

is presented in Fig. 4.8.

The algorithm is superficially similar to the
algorithm proposed by Brandt (1977). The various features
of the multi-grid algorithm are examined by testing the
algorithm on the system of algebraic equations resulting
from Galerkin finite element discretization of the
transformed Laplace equation, i.e., the globdl form of Eq.

(4.14).

To construct the multi-grid algorithm, the domain of
the problem,?, 1is approximated by a set of uniform grids

Q «+e,0.. with corresponding mesh-sizes D, >D >...>DN

1'92 L N l 2
For simplicity, let

- poso(K-1)
Dy D1/2

where Dl represents the horizontal mesh size of the
coarser grid, The transformation of the nodal values from
a coarse grid to the identical nodes in the next finer
grid or from fine to coarser grid can be performed by

employing a one-dimensional array.

For the purpose of solving the residual eqguations
(4.34) on a coarse grid, and artificial inhomogeneous term

is added to our system of equations (Eq.{(4.l14)), such that
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Fig. 4.8 Multi-grid algorithm flowchart.
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its wvalues are set equal to zero on the finest grid, ,

and serve as residuals on coarser grids.

As is illustrated in Fig. 4.8, the algorithm 1is
started by relaxation sweep on the finest grid, and
introducing the given Direchlet boundary values
(velocity potential distribution over the free surface) as
the first approximation. At this step, the equations are

the original ones, i.e.,

K=N, ¢ = ¢, r = 0

After one relaxation sweep, the calculations are checked
for convergence. The calculation in the finest grid is
terminated when the absolute convergence of the form

RS BN

€

is satisfied for all ¢. In the above relation (%+1)
represents the current iteration and ¢ is the specified
error tolerance found by numerical experiments. The
convergence for grids other than the finest grid is
examined by comparing the L, norm of the working level and
the preceding level, using relation (4.39). If the
relaxation has not sufficiently converged, a check is made
for slow convergence rate using the criterion
(Eq. (4.38)). The relaxation sweep continued 1if slow

convergence has taken place at the coarsest grid Q47
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otherwise, a switch is made to the next coarser grid. For
the coarse grid solution, the residuals in the finer grid
are computed and then injected in the coarse grid. When
the sufficient convergence is obtained on a coarse qrid,
the solutions are used to serve as additive corrections on
the next finer grid. These steps continue until the
relaxation sweep has converged for all of the unknowns on

the finest grid.

4.8.4 Numerical Results for the Multi-Grid Algorithm

To evaluate the convergence behavior of the
multi-grid algorithm, it was tested together with simple
Gauss-Seidel and SOR methods, with a series of numerical
model problems of different mesh sizes. The test problem
was chosen based on discrete equations resulting from
finite element approximate of the Laplace equation along
with a specified free surface boundary conations for a
solitary wave at its initial position. Thus, the model to

be used represents a boundary value problem.

For illustration, a solitary wave with the amplitude
H/d=.15 was used and the following model problems with
rectangular elements were studied numerically by the said

methods.
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Model Problem 1, dx=2 and 5x65 nodes
Model Problem 2. Ax=1 and 5x130 nodes
Model Problem 3. Ax=.5 and 5x260 nodes

The purpose of using the simple Gauss-Seidel and SOR
methods was to demonstrate the workability of the proposed
algorithm by the numerical work regquired to perform each
method. [n employing the SOR method, the optimum value of
relaxation parameter, w =1,45, was found by numerical

experiments, which were used in our analysis.

To employ a multi-grid algorithm, which 1is rather
insensitive to the choice of parameters for different
mesh-sizes, several numerical experiments were conducted
for our model problems. The optimum value of C, the slbw
convergence criteria, and Y, the con?ergence criteria for
the coarse grids, were found by trial and error. For the
values of C=.75, and Y=.5, the algorithm showed the best
convergence rate. A calculation was terminated when, for
some iteration the absolute error at every node was less

than the error tolerance, 10 , on the finest grid. Aall

calculations were done in double-precision arithmetic.

Comparison of the results is in ||R||2 ~-N form, where

Il RIl, is the Ljy-norm of the error and N is the equivalent
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number of iterations based on the finest grid. The
results of these experiments are presented in Table 4.1
and Figs. 4.9 through 4.11, A typical computer output of
multi-rid L,-norm of residual error for each level is

presented in Appendix B.
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TABLE 4.1 NUMBER OF ITERATIONS REQUIRED
TO OBTAIN AN ERROR OF e= 10-6
AT EVERY POINT.

Model Problem Gauss—-Seidel SOR Multi-Grid
1 ) 154 1G5 42
2 _ 409 280 56
3 1472 398 92




CHAPTER 5

EXPERIMENTAL EQUIPMENT AND PROCEDURE

5.1 Experimental Objective

The primary objective of experiments was to obtain
the water particle velocities beneath a platform as an
incident wave strikes the platform for the purpose of
comparing with the numerical results. The velocity
measurements were conducted wusing a two-dimensional
Laser-Doppler velocimeter (LDV), developed by Raichlen &
Lee (1982, 1983). No probe was introduced into the flow
field beneath the platform, so the flow was not
artificially disturbed. Three different depths wera
chosen -~ near the still-water level, mid—depth; and
near-the-botom in order to define the depthwise variation
of the velocities in the flow beneath the platform region.
Two parallel-wire resistance wave gauges were used to
measure incident wave and transmitted wave, one upstream

and downstream of the platform.

Experiments were conducted at the Keck Hydraulic
Laboratory of the California Institute of Technology with

the kind permission given by Professor Fredric Raichlen of

111




Caltech, The wave tank, the wave generation system, and
the Laser-Doppler velocimeter system were developed by
them over several years of research and development in
this general area of long wave experiments. The author

does not claim credit in this aspect, instead is very

grateful for the assistance received so that the accuracy
of the numerical results can be ascertained with the help

of the experiments.

5.2 Experimental Equipment

The experimental equipment have been described by . a
number of publications, for example, Lee, Skjelbreia, &
Raichlen (1982}, Raichlen & Lee {1982, 1983). However, it
is thought that a brief description can be provided here
for those readers who do not want to have too much details

in this regard.
5.2.1 Wave Tank

The experiments were conducted in a 130 f¢t, (40 m)
tilting flume (Fig. 5.1), located in the Keck Laboratory.
The flume has been described in detail by vVvanoni et al.

(1967).

The channel has a cross-section 43 in. (110 cm) wide

and 2 ft. (61 cm) deep. The tank has a glass sidewalls
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Fig. 5.1 Photograph of Caltech's 40-m wave tank.
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0.5 in. (12,7 m) thick in panels § ft, (152.4 cm) long.
The bottom of the flume and the short sections of the wall

at the ends are made of stainless steel plates.

For the present study, the wave tank was kept
horizontal. Circular rails attached to the top of the
walls of the flume were adjusted to be parallel to the
bottom to form precision tracks for the instrument

carriage.

5.2.2 Wave Generator

A piston-type wave generator was installed at the
upstream end of the wave tank. The wave generator, shown
in Fig. 5.2, consists of the piston which has a vertical
plate structure fixed to the wunderside of a carriage
mounted on linear hall bushings and running a horizontal
rails, one on each side of the tank. The plate is slight
narrower than the wave tank so that it can move freely
between the walls. The piston is driven, in a prescribed
manner, by an electronically programmed hydraulic system.
The principle of the system 1is the conversion of a
programmed input voltage signal into a displacement
proportional to the magnitude of the voltage. The overall
electro-hydraulic system, shown in Fig. 5.3, consists of a

hydraulic power supply, accumulators, a servo-valve, and
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Fig. 5.3 Photograph of the hydraulic supply system.
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an electro-servo system. The hydraulic power supply is
usually used to charge the accumulators which provide oil
volume for operating conditions. The servo-valve directs
the hydraulic fluid to either end of a double-acting
hydraulic cylinder for a specified voltage from the
function generator. The function generator provides the
voltage time history which is proportional to the desired
displacement-time history; that is, the trajectory of the

wave plate.

The motion of the wave is programmed for these
experiments using a method described by Goring (1979).
The basic principle is simply to drive the wave generator
in such a way that it would follow the motion of the water
particle velocity under the solitary wave. For long
waves, the particle velocity is approximately constant

depthwise so that the velocity of the plate is,

ds -
T u{s,t)

where u(s,t) is the average velocity over the depth, and s
is the plate trajectory. Thus, for a given wave of
permanent form, this equation can be integrated to define
the trajectory of the plate. A typical trajectory sf{t)
for a solitary wave is shown in Fig. S5.4. An example of

the programmed wave plate displacement and actual water
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particle displacement is shown in Fig. 5.5,
5.2.3 Platform

The platform constructed for the experiment had a
flat, horizontal wunderside, and a vertical front face as
high as the wave tank sidewalls to prevent incident waves

from splashing over the top of the platform.

The platform, constructed from wood material, was
4 ft. (122 cm) long and slightly narrower than the tank.
It was placed approximately 25 m from the wave generator.
Weights were placed inside the platform box to prevént
upward movement; clamps were used to resist horizontal

movement of the structure due to incident wave forces.

5.2.4 Measurement of the Wave Amplitude

Parallel-wire resistant wave gauges were used to
obtain variations of the water surface profile with time,
The wave gauges, composed of 0.0l in, {.025 cm} in
diameter of stainless steel wires, were spaced 0,12 in,
(.31 cm) apart. The wires were stretched and parallel to
a frame constructed of a stainless steel rod. The wires
were electrically insulated from each other and from the
frame. When the gauge was immersed in water, a current

which varies with the depth of immersion could pass from
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one wire to the other. The output signal from the wave
gauge was proportional to the resistance in the circuit
which, in turn, was proportional to the depth of immersion

of the wires,

.Before each set of experiments, the wave gauge was
calibrated by immersing it in still-water to various known

depths and then retracting tit.

Two wave gauges were used to measure the water
surface upstream and downstream the platform; mainly, the

incident waves and transmitted waves.

5.2.5 Water Particle Velocity Measurement

A two-dimensional Laser-Doppler velocimeter (LDV!
system was used to make velocity measurements. The
reference beam method (Fig. 5.6), developed by Raichlen &
Lee (1982, 1983}, was used in the system. Onlv the basic
principles of Laser-Doppler velocimeter are discussed
here; a complete description of the LDV system used for

the present study is given by Raichlen & Lee (1982, 1983).

In using the reference beam method, a laser beam from
a 5-mw Helium-Neon laser 1is divided into two reference
beams and a scattering beam. The two reference beams are

very much dimmer than the scattering beam. These beams
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pass through two Bragg cells for the purpose of frequency
shift. The two reference beams and the scattering beam
are focused by an optical system to a location neér the
center of the wave tank; each reference beam is then
directed into a photodetector. When a small particle in
the fluid crosses the focél volume of the three beams, it
will scatter a small amount of light from the scattering
beam in the direction of the reference beam with slight
frequency shift caused by the water particle velocity.
This frequency shift is denoted as the Doppler frequency,

» The light from the reference beam and the scattered
light produce a current from the photodetector which has

the amplitude

I(t) = A(t)cos(vdt)+C(t) {(5.1)

where t is the time, and the parameters A{t), and C(t)
depend on the intensities of the Llight beams and the
optical properties of the particle. The quantity Vg ls
measured by a photodetector and associated electronics; it

can be expressed as,
s -+ -+
Vg = 7 uc (e, - e)) (5.2)

where
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is'the index of refraction of the medium,

1  is the particle velocity,
is the wavelength of the laser light in vacuum,
Er is the unit vector in the direction of reference beam,
and
Es is the unit vector in the direction of gscattering
beam.
The Doppler signal output based on Egs., (5.1) and
(5.2) cannot define the direction of the velocity

components. In order to overcome this difficulty, the LDV
system used 1is eﬁuipped with a frequency shifter. The
frequency shifter consists of two Bragg cells (whfch
operate at a nominal frequency of about 40 MHz) and a
frequency synthesizer with phase-locked-loops (PLL). The
prefrequency shift between the reference beams and the
scattering beam used for the present experiments is 86.92
KHz. Based on the orientation of the laser beams for the
present experiments, the velocity components can be

determined as follows:

u=1.979 [(v, -86.92)~ 0.961597 (v, — 86.92)]
d; d,

v = -2.044 [(vd -86.92)+ 1.030055 (v
1

-86.92)] (5.3

d,

where u represents the measured horizontal component of
water particle velocity in cm/sec, v is the measured

vertical component of water particle velocity in cm/sec,
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Vq. and V4 of the measured Doppler frequency in KHz of
1 2 :

the two reference beams.

The Doppler signal f rom transmitting optics
(Fig. 5.7) mounted on one side of the flume is received by
the photodetectdr mounted on the other side of the flume
and 1is processed with an electronic counter. When the
system detects a Doppler signal corresponding to the
passage of a particle through the focal volume, it first
amplifies and filters the signal, then with a sufficient
amplitude and period of the Doppler frequency, a voltage

proportional to the Doppler frequency is provided.

The counter was calibrated before and after each
experiment by imposing sinusoidal signals with known
frequencies; in this way, the voltage output from the
counter was related to the Doppler frequency. Once the
Doppler Erequency,vdl, was evaluated the water particle

velocities could be computed from Eq. (5.3).

5.2.6 Laser-Doppler Carriage

The Laser-Doppler and 1its optical components were
firmly attached to a carriage which was isolated from the
wave tank and rested on three legs {(Fig. 5.8). The laser

optics were mounted on one side of the carriage and the
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Fig. 5.7 Photograph of the transmitting end of the
Laser-Doppler velocimeter.
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Fig. 5.8 Photograph of the Laser-Doppler veloci-
meter carriage.
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photodetector was mounted on the other side., The carriage
.was provided to facilitate moving the laser along the
channel and through the depth without <changing the
orientation of the laser beams. A precision scale was
attached to the side of the carriage for measuring the

vertical position of the carriage.

5.3 Experimental Procedure

In all of the experiments, the platform was placed
approximately 21 m. from the wave generator. Two
resistance wave gauges were used to measure the incident
wave and transmitted wave; upstream and downstream of the

platform, respectively.

Each set of experiments consisted of generating a
reproducible solitary wave and measuring the velocity
components at two positions: near the leading edge, some
distance from the leading edge along the platform, and at
different depths at each position. Wave and geometric
parameters, such as the wave height, the still-water
depth, and the soffit clearance were kept the same during

each set of experiments.

Before the beginning of each set of experiments run,

the still-water surface elevation was adjusted to the
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proper level height, and the wave geherator was programmed
to generate the desired wave. The wave gauges were
calibrated by immersion to different known  depths,
returning the gauge to its original position, and noting
the corresponding voltage change for each change by
computer. The Laser-Doppler velocimeter was calibrated
using an electronic counter by relating voltage output
from the counter to the Doppler frequency. To measure the
velocities at different vertical positions, the laser
focal volume was moved using the carriage. The variation
of the water surface elevation and the voltage output from
the LDV couﬁter system were recorded, as a function of

time, by digital computer and later were plotted.
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CHAPTER 6
PRESENTATION AND DISCUSSION OF RESULTS

Numerical and experimental results are presented 1in
this chapter which deal with the wave hydrodynamic effects
on a horizontal platform. 1In Section 6.1, a brief summary
of the solitary wave theory 1is provided and different
theories are discussed. In Section 6.2, the water
particle wvelocities within a solitary wave are computed
and compared to Laser-Doppler measurement to demonstrate
the wusefulness of LDV techniques in velocity measurement.
Section 6.3 examines the numerical stability of a sblitary
wave traveling in uniform depth. In Section 6.4, the
effect of artificial viscosity 1is examined through
numerical experiments to examine the applicability of this
method to. damp the unwanted surface oscillations.
Numerical and experimental results of water particle
velocities beneath a platform at various depths and
locations along the platform are presented in Section 6.5
and the difficulties encountered in LVD measurement ére
reviewed. In Section 6.6, the results of transmitted wave
downstream a platform are showed. Section 7 concludes the

chapter by presenting the numerical and experimental
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results of wave uplift pressure on a platform.

6.1 Incident Wave

As mentioned previously, it was important to choose a
type of incident wave which represents a finite-amplitude
wave which was propagating through shallow water, and it
can be conveniently represented mathematically. In
Chapter 1, it was stated that a solitary type of wave was
chosen as the incident wave, A solitary wave 1is a
permanent two-dimensional and irrotational flow of £fluid
which consists of a single wave form lying entirely above
the still water level and propagateé at constant velocity
without a change 1in form. There are three theoretical
solutions of the solitary wave equations which are often
referred to in the literature. Boussinesg (1871) obtained
an analytical solution for the wave profile, wave
propagation speed, and the water particle velocities.
McCowan {(1891) carried out the solution to the first-order
approximations and determined the wave profile and other
characteristics of the solitary wave. Laitone (1963}
obtained a solution similar to that of Boussinesqg, but his
solution contains higher-crder terms. Although McCowan
and Laitone solitary waves result from higher-order

theories, the Boussinesq solution 1i1s found to fit

129




experimental data with better accuracy. In the following,

the solutions of Boussinesq {(1871) will be summarized.
1. Wave profile:

n=H=H Sech2 Vég g {where x = x-ct)

2. Wave speed:

c = \/g(d+H)

3. Water particle velocity:

a. horizontal component:

2
L _nh.ln, dd[;.3y¥2]dn
= d{l4d+3(n)[l 7@ ]&;2}

b. wvertical component:

V.o X __l,ﬂ]d_ﬂ 1.2f 1
‘d{[lzd + d[l‘z“

@ dx 3

] %)

<

Based on the theoretical expressions summarized 1in
the previous section, a solitary wave 1is completely
defined for a given still-water depth, 4, and amplitude H.
Experimental results by French (1969) indicated that no
theoretical profile fits the experimental data better than
that of Boussinesq in the region of the wave crest. Since
much of the wave impact on a platform whose underside is

situated above he still-water depth involves the region

130




near the crest of the wave, the Boussinesqg profile is then

a proper model for this study.

6.2 Water Particle Velocities in Solitary Waves

To test the accuracy of our numerical mocdel, it 1is
constructive to compare the computed velocity components
to that of Boussinesqg solutions and LDV experiments. The
velocity components can be obtained by having the nodal
values of the velocity poténtial in the numerical model.
This can be shown by using the definitions of velocity

potential, that is,
= = +
“ ¢.x ¢,E€ b ¢,nn,x Q

® x =%,y Q

]

v

For a typical element, we can write

u :E:[ (E n)+n QWi’n(E.n)]¢i

i=1

4
v = anYQ ‘Pi'E(Ern)tbi

i=1

and

where u, and v are considered to be evaluated at the
center of the element. The velocity components at a
particular depth can then be obtained by a simple

interpolation of computed velocities on the elements.
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The horizontal and vertical water particle velocities
within a solitary wave for relative wave height of
¢ = 0,11 are computed and compared with that of
Boussinesq's theory and Laser-Doppler velocimeter
measurement obtained by Lee, Skjelbreia & Raichlen (1982).
The results of the horizontal water particle velocities
are presented in Figs. 6.1 through 6.3 and the vertical
water particle velocities are shown in Figs. 6.4 through
6.6 for three different depths. These depths vary from
about mid-depth to near-the-still-water level (z/d = 1.0).
Each figure shows the variation of the normalized water
particle velocity with normalized time, t Vg/d. The

depths chosen are 2/d = 0¢.92, 0.78, and 0.45.

The numerical results of the horizontal water
particle velocity at these depths are slightly larger than
the Boussinesq theory; the maximum deviation is about 4%,
In general, the experimental results agree better with the
numerical results for t Yg/d < 0., The maximum deviation
of about 2% can be observed between the numerical and
experimental results. The slight deviation between the
numerical results and that of Boussinesq's theory may be
explained by the fact that lowest-order solution 1is used
to define the velocity potential at the free surface in

the numerical model. However, the numerical results agree
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well with the experimental data, perhaps agreeing better

than Boussinesq's theory.

The vertical water particle velocities for three
different depths are shown in Figs. 6.4 through 6.6.  As
can be seen, the numerical results agree well with that of
Boussinesq's theory as well. The experimental data show
more critical comparison for vertical velocities than
horizontal water particle velocities, But, considering
the magnitude of the vertical velocity and its rapid phase
shift from positive to negative, it can be concluded that
the deviation of the experimental data is not as severe as
it appears. The asymmetric nature of the experimental
data which appear to be more evident in vertical velocity
components is probably due to the asymmetry of the
experimentally generated wave profile (see Lee, Skjelbreia
& Raichlen (1982) for .discussion.of explanation of the
results). These results demonstrate the usefulness of the
Laser-Doppler measurement as a mean of comparison for the

present study.

6.3 Propagation of Solitary Waves in a

— —

Constant Depth Region

As was previously discussed in  Chapter 4, to

construct the free surface motion, the equations of
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kinematic and dynamic boundary conditions are integrated
in time by wusing an explicit scheme. In practice, the
explicit schemes require the time step be chosen smaller
than  some critical time increment for a stability
condition to be satisfied. In the present problem, the
Courant, Friedrichs, and Lewyl(1928) condition is used.
Recalling the relation (4.27), the time increment 1is
chosen such that,
AX

ﬂt(w

Numerical experiments are usually performed to determine
the time increment, At, with which the numerical model

exhibits stable condition.

In the test program, a solitary wave with relative
height of H/d = 0.1 is considered. The mesh sizes are
chosen based on four elements through the depth and
Ax = 2.0 in, The number of nodes in the x-direction is
chosen large enough to provide enough region for the wave
to propagate inside the x-coordinate. The time increment

At is then found by the numerical experiments.

Figures 6.7 through 6.10 represent the numerical
results of the propagation of a solitary wave with a
relative height of H/d@ = .1, in a wuniform region. The

initial profile and the profiles after the wave has
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Fig. 6.7 Wave profile calculated using the numerical
scheme. (CFL = 1).
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Fig. 6.8 Wave profile calculated using the numerical
scheme {(CLF = 1/2}.
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traveled one wave length are examined for different time

increment (different CFL number).

As indicated in these fiqures, for large' time
increments the shape of the original solitary-wave changes
and its amplitude increases after it propagates for some
time. Some small numerical oscillations also exist at the
trailing edge of the solitary wave. As At reduces, these
oscillations get smaller and the solitary wave remains
more the same as the original profile. However, the
oscillations at the trailing edge of the wave cannot be
completely avoided, but the percentage of oscillations
{referring to the negative wave amplitude at the tail end
of the wave divided by the maximum amplitude at the wave
crest) can become quite minor by selecting small time
increments At. These small oscillations are errors
probably due to the truncation and round-off errors
inherent in the numerical method. Figure 6.11 presents
the numerical results of the propagation of a solitary
wave with the amplitude ratio H/d = .1, using CFL equal to
1/8. The initial profile and the profiles obtained after
160 steps, 340 steps, and 520 steps of computation are
also shown for comparison. As it can be seen, the
amplitude of the solitary wave after 520 times steps of

computation remains the same as the original profile., The
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Fig. 6.9 Wave profile calculated using the numerical
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ratios of initial-to-final volumes and 1initial-to-final
energies are found to be 1.0003 and 0.9999, respectively,
which show errors in the volume and energy ratios are

negligible.

As was pointed out, the time increment, At, has to be
reduced to a certain value for the convergence of the
algorithm. The value of At = 0.005 was found for the test
model. This implies that a substantial computational work
is needed for propagation of a wave for large times, since
each. time step involves the solution of the algebraic

system of equations resulting from global form of (4.14).

As was previously discussed in Chapter ¢, the
multi-grid algorithm be wused very effectively 1in the
present problem to speed the convergence time by several

orders of magnitude.

6.4 Solitary Waves Striking the Platform

In this section, the sequence of the wave impact on a
horizontal platform is studied and described by the
numerical model. In the test model a platform whose
underside is above the still water level and has a
relative soffit clearance of S/d = 0.1, is inserted in the

flow region. An initial solitary wave of relative height

145




of H/d = 0.15 propagates through the still water depth
d = 30.48 cm, and reaches the horizontal platform mounted
above the still water level (Fig. 6.12), To view in
sequence the progress of the wave impact as it approaches,
strikes, and propagates beneath the platform, the
numerical results are presented for several instants in
Figs. 6.12 through 6.16. Each figure represents the
variation of normalized surface profile with normalized
distance. These results are obtained for instants of O,
160 At, 240 At, 400 At, and 640 At. In Fig. 6.12, the
undisturbed wave propagates shoreward approaching the
platform. In Fig.'6.13, the wavefront propagates beneath
the platform and the vertical front face of the platform
cayses the wave to run upward. As the wave advances
further, the height of the wave run up created by the
platform grows higher (Fig. 6.14). As it appears in this
figure, the presence of the platform causes a sudden jump
in the solution which is probably due to rapid variations
of the -equation coefficients. Figure 6.15 shows a
reflected wave is to be formed at the front edge of the
platform, while the symptoms of the sudden jump in the
solution are amplified. In Fig. 6.16, the surface profile
exhibits a severe oscillation in the front face of the

platform which causes the algorithm to stop after a few
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more time steps. As can be seen from these results, the
symptoms of instability such as the severe oscillations is
only presented in the front region of the platform. As
indicated in  Chapter 4, similar problems have been
investigated for treatment of shock waves in gas dynamics
and interfaces separating two different fluids by several
authors using the artificial viscosity effect, In our
problem, an artificial viscosity term as h,xx is included
in the kinematic free surface equation. this viscosity
term is effective for the réqion where Ih,xxl is large.
To demonstrate the usefulness of this method, the same
test model is wused with inclusion of the artificial
viscosity term. The viscosity parameter 1is found by
numerical experiments, This is performed by increasing
the numerical value of the artificial viscosity until the
change in the solution profile in front of the platforms
becomes insignificant. For the test model, the viscosity
parameter of v = 0.0065 (m<%/sec] was found to have a
significant effect in damping the abnormal free surface
oscillations without altering the solutions in the region
other than the front face of the platform. The numerical
results of water surface profile for different time are
presented in Figs. 6.17 through 6.2l. In Fig. 6.17, the

wave front propagates beneath the platform with much less
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run up than in Fig. 6.13. As the wave propagates further,
a moderate size of wave run up 1is being developed
(Fig. 6.18). As the wave front continued to propagate
beneath and in contact with the platform, the height of
the wave run up grows no taller but descends to form part
of a reflected wave train (Fig. 6.19). 1In Fig. 6.20, the
surface profile descends from the seaward edge of the
platform and the reflected wave continues to propagate
away from the platform. In Fig. 6.21, the wave propagates
beneath and 1in contact with the platform while the
reflected wave train is fully developed and propagates

seaward.

6.5 Velocity Field Beneath the Platform

As discussed in Chapter 5, the Laser-Doppler
velocimetry technique was adapted to measure the velocity
components beneath the platform as the wave strikes, The
LDV  was wused to make two-dimensional, instantaneous
measurements of water particle velocity at different
depths and locations along the platform. The advantages
of the Laser-Doppler velocimetry technigque have been
mentioned previously. The major difficulty encountered in
this study was the air entrainment in the fluid region

especially near the surface and near the leading edge of
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the platform which interfered in LDV measurement. The air
entrainment is caused by the incident wave when it strikes
the platform. At this instant, the vertical front face of
the platform causes the fluid to shoot upwards and air
being entrained in the fluid as the wave continues to
propagate and qrow more turbulént. The air entrained in
the fluid causes multiple scattering of the particles
passing simultaneously through or sufficiently near the
laser beams focal volume, The velocimetry events
generated in these instances consist of a great deal of
noises than those generated at other times. An even more
severe problem encountered when interpreting the vertical
velocities. The vertical velocity profile seemed to be
varying rapidly and therefore resulting in irregular
Doppler burst signals. These noises make the true picture
of the vertical velocity time-history very difficult to

interpret as well as many spots of missing data.

Several experimental runs were conducted ¢to obtain
the depthwise water particle velocities as a means of
comparison., As mentioned earlier, the LDV ts  an
instrument which can be used to measure velocities only at
one point at a time., Therefore, it is necessary to repeat
the experiments relocating the LDV for each measurement

while checking the reproducibility of the wave generation
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system. To minimize the effects of spume and air
entrainment, wave of ﬁodest amplitudes were used. The
measurement of velocities near the surface and the leading
edge of the platform was usually with loss of data or
noisy records for some of the cases in spite of repetition
of experiments for various cases. However, for data which
were clear, comparisons with numerical results can be very

fruitfully done,.

In Figs. 6.22 through 6.25, time-history of the
horizontal water particle velocities are presented for a
platform with relativé soffit clearance of S/d = 0.1. in
each figure, the measured water particle velocity is
presented along with the particle velocity time-history
obtained from the numerical model. Figures 6.?2 and 6,23
present the normalized horizontal velocity U/\faa as a
function of nondimensional time ¢t yg/d, at a location
x = 5,1 cm, and wvertical positions of z/d = 1.0 and
z/d = 0.5, respectively. In these figures z is measured
upwards from the bed and x is measured from the leading
edge (upstream edge) of the platform., Figures 6.24 and
6.25 show the variation of horizontal velocities at. a
location x = 48 cm. and vertical positions of z/d = 0.5,
and z/d = 0.2. In all these figures, the velocity profile

is followed by a trailing oscillation of relatively small
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magnitude. There are differences which are apparent in
these comparisons, However, 1in general the differences
are not large between the results obtained from the
numerical model and those obtained by LDV measurements.
Experimental runs where also conducted for a platform of
zero soffit clearance S/d = 0.0, to evaluate how the
velocity field 1is affected. Figures 6.26 and 6,27
represent the time-history of the horizontal velocity at a
location x = 46 cm. and relative depths of z/d = 0.5, and
z/d = 0,2, respectively. As can be seen from these
figures, the horizontal veleccity profile for the case of a
platform with =zero soffit clearance has similar trend as
that of the horizontal velocity induced by an undisturbed
solitary wave except with reduction of the amplitude and

increasing the base width,

6.6 The Transmission of Solitary Waves Behind a Placform

In the experimental.study of this work, in addition
to measuring the incident wave and velocity field, the
transmitted waves behind the platform were also recorded
to define the time-history of the variation of the water
surface elevation (the wave) at the downstream edge of the
platform. This problem is of special importance to that

of breakwater problem. In El Ghamry's experimental study
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of wave uplift forces on a dock, the transmitted wavés
were recorded at a short distance behind the dock under
the action of periodic incidentlwaves. The dock used was
constructed of thin aluminum plate with no front face to
minimize reflections due to its thickness. The form of
the transmitted waves was quite different from that of
incident wave. They could not be approximated by sine
waves and they were not completely irregular, The
transmitted wave form was rather complicated, consisting
of different harmonic components with different amplitudes
and varying phase shifts. The c¢hange in phase shift
seemed to be a function of time and was not a random

variable.

In our work, the transmission ﬁf solitary waves
behind a platform was considered for the case of a
platform with a positive underside clearance and zero
clearance. Since the propagation of the solitary wave to
the downstream edge of th platform involves substantial
computaticnal steps in the two-dimensional numerical
model, the transmitted waves were recorded at a short
distance downstream of the platform for the purpose of
comparison. In the experiment described in Chapter 5, a
wave gage was placed about 10 cm. from the downstream

edge of the platform to record the transmitted wave right
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after the platform. .

The first example of this comparison 1is shown in
Fig. 6.28 where the relative wave amplitude is = 0.13
and the relative soffit clearance is S/4 =.0.l. In this
figure, the transmitted wave profile is normalized by the
water depth and is expressed as a function of the
nondimensional time, ¢t Yyg/d. As can be seen from this
figure, the amplitude of the transmitted wave is less than
incident wave and the wave appears to be separating into
individual waves of smaller amplitude. The oscillatory
waves of small amplitudes and short periods are observéd
to be trailing the transmitted wave. The agreement
between the experimental and numerical results is quite
good considering the long computational steps involved 1in

the computational procedure.

[t was of interest to investigate the effect of the
platform of zero soffit clearance on an incident solitary
wave. In Fig. 6.29, the transmitted wave profile is
expressed as a function of nondimensicnal time for the
relative wave amplitude of ¢ = 0.15, and S/d = 0.0. It is
seen from this figufe that for the case of zero soffit
clearance the transmitted wave profile consists of a

single wave which appears to be similar to a solitary wave

169 .




*T°0 = P/S PU®R £7°0 = 3 IO0J SABM pa3jTwsuer],

BZ'9 'b1a

jusw 3dXy — — — —
japow
|1021193WnNN
wd Of =7
wil g=p
wo 8% =§

i E,*

AT

SO0

—oro
P

—Sr0

170




6Z"

9

JUBWIIAAXT] = - — =

|[apow
LSJEETTLIN

wd 0} =7

W OZ=p
. 0=S

“bTa

—S50'0

-00

YL

171




followed by a relatively small amplitude oscillatory
waves, This 1is interesting to note that even with the
presence of. the platform in the flow field, the
transmitted wave 1is not severely distorted but it is
apparently similar to a symmetrical solitary wave profile.
The transmitted wave ©profile indicates significant
reduction of the maximum wave amplitude of the incident
wave (the amplitude is decreased by about 30%). This is
certainly related to the fact that some of the wave energy

is reflected at the upstream of the platform.

6.7 Wave Uplift Pressures on the Platform

In this section the details of the uplift wave
pressures due to the boundary condition imposed on the
velocity and acceleration field by the presence of the
platform is studied. As was previously mentioned
experimental studies by several investigators including
French (1969) have confirmed the existence of the wave
uplift pressures as the incident waves strikes and
advances beneath and in contact with a horizontal
platform, The typical pressure profile is usually
characterized by a sharp impact caused by initial contact
of the wave with the platform followed by a slowly varying

pressure which is first positive and then negative when

172




the wave leaves the platform.

In the present analysis the wave uplift pressure can
be determined once the velocity potential field is
computed from the numerical model. Using the Bernoulli

equation, the pressure head can be expressed as a

AR EREE CCRRIRER

where the soffit clearance, S, is the distance measured
from the still water depth to the underside of the
platform. Thus, at any pecint along the platform the
time-history of pressure can be computed having computéd
velocity potential as a function of time. To investigate
the functional behavior of the uplift pressure, several
cases were considered for different soffit.clearances and
different locations along the platform. For the purpose
of comparison, the experimental results of wave uplift

pressure performed by French (1969) are presented and

discussed.
As was mentioned in  Chapter 2, French (1969}
conducted a two-dimensional laboratoeory study to

investigate the wave uplift pressures on a horizontal and
fixed platform when individually generated solitary waves

strike and propagate beneath the platform. Pressure

173




transducers were mounted on the underside of the platform
for the measurement of the induced pressure by the wave,
There were some problems involved in the pressure
measurements. The problem of spatial resolution due to
the transducer size which was recognized during the
preliminary test was later improved by using transducers
of a smaller size but had not been completely solved. In
spite of mounting the transducers in adaptors, they
suffered a troublesome drift in zero-pressure output due
to changes in temperature as the water contacted the
platform. Another éroblem which arose in pressure
measurement was a series of oscillation in output signal
at approximately the point where the slowly-varying
pressure profile passes from positive to negative region.
A curve fitting method was employed in the region, before
and after the regions of oscillation to indicate the time
of zero pressure, separating region of positive and
negative pressure. In our work, wave uplift pressures for
the cases of moderate amplitude are computed and compared
to that of French's experimental results. For consistency
of comparison, the same geometrical and incident wave
parameters are used. Due to inherent characteristic of
the discrete numerical model, as the wave front advances

beneath the platform, its contact at every new point
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sustains an impulsive peak pressure which in turn affects
the pressure at other points along the platform. To
represent the mean value about which the computed pressure
varied, an approximate envelope curve was fitted to each

set of data.

In Figs, 6.30 through 6.33, the relative pressure
head P/Yd 1is expressed as a function of normalized time,
t VE7E for different wave amplitudes, soffit clearances,
and locations along the platform. As can be seen, the
pressure-time curves are characterized by a sudden rise to
a peak followed by a rapid drop, and slowly-varying
pressure which 1s first positive and then negative. The
positive pressure is predicted at the advancing wave front
where the rising water makes 1initial contact with the
platform soffit. As the trough advances towards the
point, the water falls below the equilibrium position.
This drop on the water surface under the platform would
¢reate a vacuum in the space between the platform and the
water surface. This process creates a suction force as a
negative uplift, In these figures, at tyg/d = 0, the
wave first makes the initial contact with the seaward edge
of the platform. The differences between the computed
pressures and measured pressures arise from the

approximations employed in determination of the pressures.
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As was mentioned before, due to severe oscillations in the
pressure records from the experiment which occurred at the
time of zero pressure, a curve was fitted to determine the
approximate point of zero pressure. French {1969)
predicted these oscillations as the wave of recession
began to form at the seaward end of the platform, In
reducing the slowly-varying pressure data from records,
the sampling frequency was 1less than the oscillation
frequency and therefore the oscillations do not appe;r
clearly in experimental records. The problem of
temperature shift is also a cause of discrepancy in these
comparisons. As this figures show the time of
zero-pressure, 1indicating the point that the wave is no
longer in contact with the measurement point, indicates a
drift comparing to that computed by the numerical model.
Because of smoothlng used in the determination of pressure
profile from the numerical model, the process of changing
pressure of negative to zero is not slowly-varying as it
1s in the experiment. But the duration of pressure
indicated, reflects the time of contact of the wave with a

given point on the platform.

Figures 6.30 and 6.31 show clearly that for a fixed
platform condition such as soffit clearance, the duration

of positive uplift pressure to duration of negative uplift
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pressure at any givgn point on the platform decreases with
increasing x/d. Comparison of Figs. 6.30 through 6.31 for
§/d = 0.1 with Figs, 6.32 through 6.33 for S/d = 0.2
indicates that for any relative position x/d along the
platform, the ratio of the duration of the positive to
negative uplift pressures increases with the decrease of
the relative soffit clearance S/d. Figure 6.32 indicates
that waves slightly higher than the soffit clearance will
cause a modest uplift pressure but a negative pressure of
considerable duration. Figure 6.33 shows the pressure
function for a location x/d = 3.9 where the duration of
positive uplift pressure is very short, and the duration
of negative pressure is longer than for x/d = 8.6 shown in

Fig. 6.32.

The time-history of the total uplift force per unit
width of the platform is shown in Figs. 6.34 and 6.35.
In these figures, uplift force computed based on the
present numerical model is normalized with respect to FS,
the hydrostatic force due to an undisturbed wave of height
H less than the soffit clearance s (equivalent to the
weight of water in the region above the platform). In
Fig. 6.34, the experimental results of French (1969) is
presented., The comparison is quite encouraging, As can

be seen from these figures, the normalized force 1is
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initially positive which increases with time to a maximum;
then decreases with time, reaching negative values and
then returns to zero. Figure 6.34 indicates that even a
wave slightly greater than the platform soffit could exert
a negative force of considerable duration. In Fig. 6.35,
the normalized uplift force for a platform with smaller
soffit clearance is shown. This figure illustrates that
as the soffit decreases, the duration of positive uplift

force to duration of negative uplift force increases.
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CHAPTER 7
SUMMARY AND CONCLUSION

The major objective of the present investigation has
been concerned with the study of wave hydrodynamic effects
on a horizontal platform that result from the incidence of

a solitary wave.

In the analysis, a two-dimensional finite element
model was considered for the case of 1inviscid,
incompressible, and irrotational fluid region. The
geometrical configuration of the fluid domain was
described by a horizontal channel bottom and a flat
horizontal platform. The conditions chosen for the study
are relevant to prototype conditions of interes;.
Solitary wave was used as a model incident wave, since it
represents a relevant model of ocean waves in the region
where marine  structures are located. In order to
construct the finite element model, the fluid region was
discretized into small elements of convenient shape. To
handle the moving free surface boundary, isoparametric
mapping technique was adapted to transform the fluid

region into a regular geometry. To generalized the finite
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element mesh, edch rectangular cell in the parent
computational domain was separately mapped to a new
isoparametric plane. Finite element discretization of the
governing equations was performed by employing the
Galerkin weighted residual method. To construct the free
surface motion, the free surface equations were integrated
with respect to time. This was done by invoking a
mass~lumping technique to eliminate any coupling between
the time derivative of unknown at adjacent nodes. The
time derivatives at computational node were then simulated
using explicit forward difference scheme. The stability
of the numerical model was tested for propagation of a
solitary wave in a fluid region of constant depth. Using
the CFL convergence condition, it was found that the
algorithm was conditionally stable restricting the time
increment to be less than a bounded value. A platform was
inserted in the model to simulate the flow transient
beneath - the platform due to an incident wave. The
sequence of the wave impact was studied by the numerical
model. An artificial viscosity term was included in the
kinematic free surface equation to smooth the rapid
oscillation of the free surface, caused by the front edge
of the platform. Numerical experiments were performed to

determine the numerical value of the viscosity parameter
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which maintained a smooth surface profile in front of the
platform. A multi-grid solution algorithm was developed
and used to speed the repeated solution of linear
algebraic equations resulted from finite element
discretization of the transformed Laplace equation. It
was found that the multi-grid algorithm could effectively
be used to reduce the convergence time by several orders
of magnitude. An experimental study was conducted in the
Keck Hydraulic Laboratory of the California Institute of
Technology. A two-dimensional Laser-Doppler velocimeter
developed by .Raichlen & Lee (1982, 1983) was used to
measure the water particle velocities in the fluid region.
Wave gages were used to measure the incident and
transmitted waves upstream and downstream of the platform,
The major difficulty encountered in LDV measurements was
due to air entrainment in the fluid region, near the
surface and near the leading edge of the platform
especially for incident waves of relatively large
amplitude. The measurement of vertical veloci;y was
troublesome because of the noise and irregularities
present in output data. Several experimental runs were
conducted toc measure the depthwise variation of the water
particle velocities. To ensure that the developed finite

element model could be applied with confidence to the
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problem of wave impact on a platform, the water particle
velocity components induced by an wundisturbed solitary
wave were computed for several depths and compared with
that of Boussinesq's theory and available LDV experimental
data. The computed horizontal velocities were found to
agree reasonably well with the LDV measurement with
maximum deviation of 2%. The computed vertical velocities
agreed well with that of Boussinesqg's theory but LDV
experimental data showed more critical comparison. But
the deviation was not very large considering the magnitude
of the vertical.velocity and the fapid phase changes from
positive to negative, Comparisons of numerical model
results and the velocity data obtained by an LDV
measurement were made for the case of positive as well as
zero soffit clearances and at different locations along
the platform. Different depthwise positions were
considered to define the wvertical variation of water
particle velocity, The numerical results were found to be
in good agreement with experimental data obtained by LDV
measurement., For the case of the platform with zero
soffit clearance the horizontal velocity profiles
demonstrated similar trend as in the case of undisturbed
solitary wave except with the reduction of amplitude and

increase 1in base-width. In addition to velocity
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components the transmitted waves downstream the platform
were computed and compared to that of experimental
measurement. This problem may be of interest to
breakwater problems. The transmitted wave from a platform
with positive soffit clearance appeared to be separating
into individual waves of smaller amplitude. However, the
maximum amplitude was less than the incident wave. For
the case of a platform with =zero soffit clearance the
transmitted wave profile consisted of a single wave which
appeared to have similar trend as a solitary wave but with

significant reduction and in wave amplitude.

The uplift pressure time-history were computed and
compared to that of French's (1969) experiment using
pressure transducers. The pressure profile was
characterized by a sudden rise to a peak followed by
slowly-varying pressure which was first positive and then
negative. The variation of the pressure was obtained for
different soffit clearances and different locations along
the platform. The positive pressure was predicted at the
advancing wave front. It was found that the ratio of fhe
duration of positive wuplift pressure to negative uplift
pressure decreases with the increase of the relative
distance from the front edge of the platform, and pressure

induced by a wave of slightly higher than the platform
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soffit

clearance

causes an insignificant positive uplift

but a negative uplift of considerable duration.
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APPENDIX A

A.l EVALUATION OF THE ELEMENT STIFFNESS MATRIX

The element stiffness matrix resulting from the
finite element discretization of the transferred Laplace

equation takes the form

- 1.1 \ 1.1
Kij AKM-{ {1 wi'qu'Edsdn+ BKM£lI_1Ti,nTj,ndEd”+

1 1.1 1 1,1
. . + =5 . . -
5 cknllj_lwl'nw]’gdadn 3 CKM{q!_lWl;Ew];n d&dn

1,1
Dy [ J ¥; ¥y dédn
-1 -1
where 1 = 1,...,4 and j = 1,...,4. These integrals are

evaluated as

1,1 ,2 1
IR dgdn = =
-1 -1 1,€ 3

1.1 ,2 _ 1
RWURELIE

B
[
e
[
L]
(-
0
- -
(=
-
urt
[o 9
o
u
=3
b

1,1 1
LY, gy asan = 3

and so on. Then the entries in the element stiffness

matrices are found to be
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kll =3A+sB+icC+ % b
K12 = - % A+ % B + % D

K3 = - % A - % B - % c-%D
Kig = § A - % B~ 30D

K21 = %2

Ky, = % A+ % B - % c + % D
Ka3 = % A= % B - % D

Kyg = - % A - % B +7C- g C
K31 = Ky

K32 = K3

Ky =2A+:B+2cC- % D
K34 = -% A+ % B - % D

Kgp = Xqy

Kaz = Koy

Koz = Ky

Kyy = % A+ % B - % c-3%0

All the coefficients are evaluated at the center of the
element (k,m), where k and m are column and row numbers of

the lower-right node.
A.2 DERIVATION OF GLOBAL FINITE ELEMENT EQUATIONS

To obtain the global finite element equations, we
isolate the typical group of assembled elements of

Fig., 4.5 which are pictured in Figs. A.la through A.lf,
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(a) M ¢+— & $
{ 2

M-1é . 4

K-2 K-1 K

(b) M +—@

M-{&u—sp

NCol-{  NCol

M+1,¢————-

(¢c) M G—

M-{6—e

Fig. A-1 .Typical groups of assembled elements for the flow
region. (a) Interior elements, (b) right-side
element, (¢) left-side elements, (d) bottom-side
elements, (e) left-corner element, (f) right-
corner element. 204
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Fig, A-1 Continyed.
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where NROW and NCOL represent the number of nodes in
horizontal and vertical directions, respectively. The
global equation for each typical group of assembled
elements, shown in Figs. A.l1, is obtained by finding the
appropriate entries from the local matrices which define
the coefficients in the finite element equations. The

global equations are found as,

1
——
A(K-1,M)

$(K-1,M) = - [ A(R-2,M-1) ¢ (R-2,M=-1) +A (K-1,M~1)

6 (K-1,M-1)+A (K,M=1) ¢ (K, M~1) + A(K~2,M) 4 (K-2,M) +
A (K, M) ¢ (K, M) +A (K=2, M+1) ¢ (K=2,M+1) +A (K=1, M+1) ¢ (K=1,M+1)

+*
+A (K, M+1) ¢ (K, M+1)]

K = 3,...,NCOL (A.1a)
M= 2,... 6NROW-1
where

R Q

A(R-2,M-1) = Ky,

x D @

R(K-1,M-1) = Ky, + K,

. @

A(K,M~1) 2(312 ®

A(K-2,M) = Ky, + K,;

. @ @ ®

A(K=1,M) = K33 + Kgy + Kyg + Ky

A(K,M) =%3 *%z

A(k-2,M+1) =(;'?

’ 24 5

A(K-1,M+1) = K,y + Ky,

* ©)]

A(K,M+1) = K,
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superscripts in the-above expression represent the element
numbers shown in Fig. A.la. For instance, the superscript
© represents the element (K,M-1) according to  our

convention. Referring to Fig. A.lb, we have,

6(K,M) = - x—b [B(E-~1,M~1)6 (K-1,M-1)+B(K,M-1) ¢ (K,M-1)

B(K,M)

+ B(K=1,M) ¢ (K-1,M)+B(K-1,M+1) ¢ (K-1,M+1)

*
+ B(K,M+1) ¢ (K,M+1)]

K = NCOL (A.1b)
M = 2,.-.,NROW“'].
where

B(K-1,M=1) = K31

. )

B(K,M-1) —Cz)p_ 5

B(K~-1,M) = K34 + K21

@) 3

B(K,M) = K33 + K22

* 3 )

B(XK-1,M+1) = K24

A

B{K,M+1l} = K23

Referring to Fig. A.lc, we obtain,

$(K-1,M) = —2——— [C(K-1,M-1)¢ (K-1,M~1)

C(K-1,M)

+C(K,M-1)0 (K,M-1) + G(K,M)o (K,M)
(A.lc)

+ E(R-1,M+1)0 (R-1,M+1) + C(K,M+1)p (K,M+1)]

2
2,...,NROW-1

K
M
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where
(*: (K-l rM‘l) = K

41
x Q@
C(K,M=-1) = K42
. Q @
C(RK=1,M) = K44 + Kll
. o @
C(K,M) = K43 + Kl2
% @
C(K—l,M+1) = Kl4
« @
C(K,M+1) = K13

and
i *

$(K-1,M) = - 7¥—"— [D(K-Z,M)¢(K-2.M)

* * (A.1d)
+D(K,M) ¢ (K,M)+D(K~2,M+1) ¢ (K-2,M+1)

+5(K-1,M)¢(K-l,M)+B(K,M+1)¢cx,M+1)]

i

3'10.; NCOL
1

K
M

where
. @
D(K~-2,M} = KZl
. €))
. ©)
D(K,M) = KlZ
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K24
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Koz * ¥y

B(K-2,M+1)

It

[ V]

*
D(K-1,M+1}

[N ]

©
K

x
D(K,M+1) = K,
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1 *
¢ (K,M) = - & [E(K+1,M)¢(K+1,M)

E(K,M) (A.le)

. E(K.mlw(K.M+1)+Ecx+1,m+1)¢(K+1.M+1>]

K =1
M=1
wher% @
E(K,M) = K,
. €©)
E(K+1,M) = K12
E(R+1,M+1) = K 5
. ®
E(K,M+1) = Kl4
and
0K, M) = = s [F(K-1,m) 0 (k-1,m) (A.1f)
F{K,M)

+ FP(K,M+1})¢ (K,M+1) + F(K-l,M+l)¢(K-l,M+l)]

NCOL
1

nou

K
M
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where &
F(K-1,M) = 21

x @

F(K,M) = K22

F(K-1,M+1) = K

- f23
@
K

»
F(K,M+1) = 24

A.3 GLOBAL REPRESENTATION QF THE EQUATIONS OF

THE FREE SURFACE

Referring to Figs. A.2a through A.2c, the global free

surface equations are obtained in the following:

(a) Equations for the element left node:
2o (KM)+34  (K=1,M)=P, ¢2 (K=1,M~1)+P. ¢ (K=1,M-1 1
3 ,t r 3¢,t r l¢ ’ 2¢( ’ )¢(KpM_ )
#P 19 (K=1,M=1) ¢ (k, M) +P,0 (K=1,M-1) ¢ (K-1,M) +P. 92 (K, M-1)
' 2
+P6¢(K9M“l)¢(K:M)+P7¢(KIM-1)¢(K'lrM)+P8¢ (K, M) (A.2a)

2 4 2
+P9¢(KrM)¢(K"1t_M)+P10¢ (K""lrM) -§' gh(K"lrM) "'3‘ gh(K:M)

+ 2gd

and

2 1 _ |
‘3' h’t(K—ll’M) +§ h!t(KrM) -CI1¢(K-1,M‘-1)+CI2¢(K;M"1)+q3¢ (K:M)

+q4¢(K—l,M)+qs¢(K-l,M—l)h(K-l,M)+q6¢(K-l,M—l)h(K,M)
(A.2b)
+q7¢(K,M-l)h(K-Lbﬂ+q8¢(K,M“l)h(K,M)+q9¢(K,M)h(K—l,M)
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(d)

(e)

(f)

i
NCol-1 NCol

Fig. A-2 Typical groups of assembled elements
for the free surface boundary.
(a) surface elements, (b) left-coner
element, (c) right-corner element.
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where

~ ©
L
l_ulﬁ &)
+ ko
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@ m [ )
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o _41
o ° ~BaEe e 1H1€ =
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All the coefficients are evaluated at the center of the
element whose right-lower corner node has the subscripts

(K'M_l) »

(b) Equations for the element right node:
2 4 .2
34 (K-2,M)+3¢  (K-1,M)=r ¢° (K-2,M-1)

+r2¢(K~2,M~l)¢(K-l,M—l)+r p{K-2,M-1)¢ (K-1,M)

3
+r4¢(K-Z,M—l)¢(K-2,M)+r5¢2(K—l,M—l)+ (A.2¢)
+r9¢(K-l,M)¢(K-2,M)+r10¢2(K-Z,M)

- % gh(k-2,M) - § gh(RK-1,M) + 2qd

and
1 2 _ - _ - _

3 h't(K-Z,M)+§ h't(K-l,M)-t1¢(K 2,M l)+t2¢(K 1,M-1}
+t3¢[K-l,M)+t4¢(K-2,M)+t5¢(K—2,M—l)h(K—2,M)
+t6¢(K-Z,M-l)h(K-lfM)+t7¢(K*l.M-l)h(K-2,M) {(A.2d4)
+t3¢(K*l,M-l)h(K-l,M)+t9¢(K-l,M)h(K-Z,M)
+tlo¢(K—l,M)h(K-l,M)+tll¢(K-2,M)h(K—2,M)

+t, 50 (R=2,M) b (K~1,M)

where
r, = - 33 B
r, =~ 1z B
L, = %5 B + %5 c
r, = %7 B - %7 C
r, = -3 B
Lg = % B + % c
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r, = %5 B - % c

re = *(% A+ % B + % C)
Ig = -(-%.B + %— B - %5 C)
r10™ ‘(é A+ %I B - %5 )
) = - % G

t, = - % G

£, = i

ty = % G

te = - 1z H

tg = 3z H

£y = - % H

tg = % H

ty = % A+ é B

tig= ~(F A+ g H

£,= - A+ %5 H

t12""%‘ A - %E H

{c} Equations for assembled elements:
2 8 2 B 20t
§¢,t(K-2'M)+§¢,t(K-I'M)+§‘¢,t(K'M)‘(Plﬂ:S)d’ (K ]-:M 1)
+ (B g*rg) 82 (K=1,M)+ (P +r ) ¢ (R-1,M-1) ¢ (K-1,M)
+P2¢(K-1,M-l)¢{K,M-1)+P3¢(K—1,M~l)¢(K,M)+P5¢2(K,M-l)
+P 0 (K,M=1) ¢ (K, M) +P ¢ (K, M=1) 6 (K-1, 1) +P g% (X, M)

| 2

=iy ’ a0 Y -2,M-1 K-1,M~-
+Pg¢(K 1, M) ¢ (K M)+r1¢ (K-2,M l)+r2¢(K 2,M~-1}) ¢ (K-1 H&.Ze)
+2$(K=2,M-1) ¢ (K=1,M) +x ;6 (K~2,M~1) 6 (=2, ])

+r7¢(K—1,M-1)¢(K-2,M)+r9¢(K—1,M)¢(K-2,M)+r10¢2(K-2,M)

8

S gh(K-1,M)- 3 gh(X,M) + 4gd

- 2 gh(x-2,m) -
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and

Lpn (x-2.m)+3 0 (R-1,Mm)+1 h (K. M)=(q.+t_) 6 (K~1 M1
3, Ty R IR LT R (K M) =g ey ) 0 (R-1L, ML)
+lqytty) ¢ (R-1,M)+q,0 (K, M~1) +q4 ¢ (K, M) +t, ¢ (K-2,M-1)
+t4¢(K—er)+(q5+t8)¢(K-11M-l)h(K"lrM)+
+(qll+t10)¢(K-l,M)h(K-l,M)+q6¢(K-l,M-l)h(K,M) (A.26)
+q7¢(K,M—l)h(K"l,M)'i'thb(K,M—l)h(K,M}-i-qgcb(K,M)h(K-]_,M)
+q10¢(K,M)h(k,M)+q12¢(K-l,M)h{k,M)+t5¢(K-2,M-l)h{K-2,M]
+t6¢(K-Z,M-l)h(k-l,M)i-t_’.cp(K-l,M—l)h(K-Z,M)+
+t9¢(K"lrM)h(K-2rM)+tll¢(K-er)h(K"Z,M)

+t),6(K-2,M) h(R-1,M)
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B-1.

APPENDIX B

MULTI-GRID L.,~-NORM AT DIFFERENT GRID LEVEL

GRID LEVIEL

.’:\-NMPJ.’-.JH.MI"JMJLMHP:J!‘-JHﬂwuhbuNMMHHMNLAMHI‘JMHH

2

L2--H0%M OF CRROR

12.,824637
11,75155
12,467923
11.36426
8,204524
6862130
4,171834
J.224989
3.382702
3.141024
2:,1243008
1.701533292
1.8273764
1,4233%09
1.18192¢9
0. 2UvH029
0,46123031
0.472116479
Q.A3742505
0:4602108
0.37253730
02942404
0. ZL7038y
0,2924114
0,2054240
G 1716066
Q.1067053

B,454743E-02
B.AL2GLTE-02
8.032750E-02
6. u13955E-02
G 0411002
G+3007701-02
4,721094€E-02
3,40?202L~-02
2.8A078646-02
1.7A42949E=-0G2

Level l=finest grid
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GNP R = = B N B U RS 2RI R Db e L G RN = B W béuHMbJHHr-Ju.A

1,277310E
1,4108250 - o1
1,2597846E 02
1,2408208-
9, 377063E-03
9. 567135501
B,4179G2E-03
5,773342L-03
4,923012E~03
V9787 47E-03

"2-3521Q7E—03

.391618E~03

cAL12377E-03
4.;;8 H433E-03
1.8335257E-03
1, 60““41f 03
1.723453E-03
1.433014E 03
1,044G82E~-03
8+443124E-04
5.185505FE-04
4,11833412-04
3.9598755E£-04
4, 1394586 ~04
4,278320E-04
[ .9-1-5;;9;[ “04
...n..JO'!IJ._.J 04
2.,7032370L-049
s.hO//G/F -04
1,65249412-04
1:214729E-04
3,45054112-0%5
6 760D9GE~03

A A0ATEAE-08

2702443605
2.3F057510-05
2+64443585-09
Je3125207-05
4,846273E-08
G v130R730-085
\J'hl"‘l"f "“()
L~h“7??+1—04
73761 3E-08
2.15??50E*05
1.651729E-05
1,30370°02-05
B.B844410K 04
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e RN L ER A

7. 158550604
$5.073812E-04
4,22695CE-04
3.384851C-06
2.5046311E-064
2.827872E-064
4,9721087E-04
6.,690074E-06
3.125241E-06
2.2374194E-06
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